skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CyberGIS-Compute: Middleware for democratizing scalable geocomputation
CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is becoming increasingly important to tackling a variety of socio-environmental problems like climate change, disaster management, and water security. While recent advances in high-performance computing (HPC) have the potential to help address these problems, the technical knowledge required to use HPC has posed challenges to many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with HPC, and establishing a suite of APIs friendly to domain experts.  more » « less
Award ID(s):
2118329 2321070 2112356
PAR ID:
10543131
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
SoftwareX
Volume:
26
Issue:
C
ISSN:
2352-7110
Page Range / eLocation ID:
101691
Subject(s) / Keyword(s):
CyberGIS High-performance computing Middleware Scientific workflow
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGISJupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework. 
    more » « less
  2. Abstract Maintaining educational resources and training materials as timely, current, and aligned with the needs of students, practitioners, and other users of geospatial technologies is a persistent challenge. This is particularly problematic within CyberGIS, a subfield of Geographic Information Science and Technology (GIS&T) that involves high‐performance computing and advanced cyberinfrastructure to address computation‐ and data‐intensive problems. In this study, we analyzed and compared content from two open educational resources: (1) a popular online web resource that regularly covers CyberGIS‐related topics (GIS Stack Exchange) and (2) existing and proposed content in the GIS&T Body of Knowledge. While current curricula may build a student's conceptual understanding of CyberGIS, there is a noticeable lack of resources for practical implementation of CyberGIS tools. The results highlight discrepancies between the attention and frequency of CyberGIS topics according to a popular online help resource and the CyberGIS academic community. 
    more » « less
  3. A common research process in visualization is for visualization researchers to collaborate with domain experts to solve particular applied data problems. While there is existing guidance and expertise around how to structure collaborations to strengthen research contributions, there is comparatively little guidance on how to navigate the implications of, and power produced through the socio-technical entanglements of collaborations. In this paper, we qualitatively analyze reflective interviews of past participants of collaborations from multiple perspectives: visualization graduate students, visualization professors, and domain collaborators. We juxtapose the perspectives of these individuals, revealing tensions about the tools that are built and the relationships that are formed — a complex web of competing motivations. Through the lens of matters of care, we interpret this web, concluding with considerations that both trouble and necessitate reformation of current patterns around collaborative work in visualization design studies to promote more equitable, useful, and care-ful outcomes. 
    more » « less
  4. Summary The interdisciplinary field of cyberGIS (geographic information science and systems (GIS) based on advanced cyberinfrastructure) has a major focus on data‐ and computation‐intensive geospatial analytics. The rapidly growing needs across many application and science domains for such analytics based on disparate geospatial big data poses significant challenges to conventional GIS approaches. This paper describes CyberGIS‐Jupyter, an innovative cyberGIS framework for achieving data‐intensive, reproducible, and scalable geospatial analytics using Jupyter Notebook based on ROGER, the first cyberGIS supercomputer. The framework adapts the Notebook with built‐in cyberGIS capabilities to accelerate gateway application development and sharing while associated data, analytics, and workflow runtime environments are encapsulated into application packages that can be elastically reproduced through cloud‐computing approaches. As a desirable outcome, data‐intensive and scalable geospatial analytics can be efficiently developed and improved and seamlessly reproduced among multidisciplinary users in a novel cyberGIS science gateway environment. 
    more » « less
  5. Scientific simulations generate large amounts of floating-point data, which are often not very compressible using the traditional reduction schemes, such as deduplication or lossless compression. The emergence of lossy floating-point compression holds promise to satisfy the data reduction demand from HPC applications; however, lossy compression has not been widely adopted in science production. We believe a fundamental reason is that there is a lack of understanding of the benefits, pitfalls, and performance of lossy compression on scientific data. In this paper, we conduct a comprehensive study on state-of- the-art lossy compression, including ZFP, SZ, and ISABELA, using real and representative HPC datasets. Our evaluation reveals the complex interplay between compressor design, data features and compression performance. The impact of reduced accuracy on data analytics is also examined through a case study of fusion blob detection, offering domain scientists with the insights of what to expect from fidelity loss. Furthermore, the trial and error approach to understanding compression performance involves substantial compute and storage overhead. To this end, we propose a sampling based estimation method that extrapolates the reduction ratio from data samples, to guide domain scientists to make more informed data reduction decisions. 
    more » « less