skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The γ -process nucleosynthesis in core-collapse supernovae: II. Effect of the explosive recipe
Context.Theγprocess in core-collapse supernovae (CCSNe) can produce a number of neutron-deficient stable isotopes heavier than iron (pnuclei). However, current model predictions do not fully reproduce solar abundances, especially for92, 94Mo and96, 98Ru. Aims.We investigate the impact of different explosion energies and parametrizations on the nucleosynthesis ofpnuclei, by studying stellar models with different initial masses and different CCSN explosions. Methods.We compared thep-nucleus yields obtained using a semi-analytical method to simulate the supernova to those obtained using hydrodynamic models. We explored the effect of varying the explosion parameters on thep-nucleus production in two sets of CCSN models with initial masses of 15, 20, and 25Mat solar metallicity. We calculated a new set of 24 CCSN models (eight for each stellar progenitor mass) and compared our results with another recently published set of 80 CCSN models that includes a wide range of explosion parameters: explosion energy or initial shock velocity, energy injection time, and mass location of the injection. Results.We find that the totalp-nucleus yields are only marginally affected by the CCSN explosion prescriptions if theγ-process production is already efficient in the stellar progenitors due to a C−O shell merger. In most CCSN explosions from progenitors without a C−O shell merger, theγ-process yields increase with the explosion energy by up to an order of magnitude, depending on the progenitor structure and the CCSN prescriptions. The general trend of thep-nucleus production with the explosion energy is more complicated if we look at the production of singlepnuclei. The lightp-nuclei tend to be the most enhanced with increasing explosion energy. In particular, for the CCSN models where theα-rich freeze-out component is ejected, the yields of the lightestpnuclei (including92, 94Mo and96Ru) increase by up to three orders of magnitude. Conclusions.We provide the first extensive study using different sets of massive stars of the impact of varying CCSN explosion prescriptions on the production ofpnuclei. Unlike previous expectations and recent results in the literature, we find that the average production ofpnuclei tends to increase with the explosion energy. We also confirm that the pre-explosion production ofpnuclei in C−O shell mergers is a robust result, independent of the subsequent explosive nucleosynthesis. More generally, a realistic range of variations in the evolution of stellar progenitors and in the CCSN explosions might boost the CCSN contribution to the galactic chemical evolution ofpnuclei.  more » « less
Award ID(s):
1927130
PAR ID:
10543564
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
686
ISSN:
0004-6361
Page Range / eLocation ID:
L8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Type Ia supernova explosions (SN Ia) are fundamental sources of elements for the chemical evolution of galaxies. They efficiently produce intermediate-mass (withZbetween 11 and 20) and iron group elements—for example, about 70% of the solar iron is expected to be made by SN Ia. In this work, we calculate complete abundance yields for 39 models of SN Ia explosions, based on three progenitors—a 1.4Mdeflagration detonation model, a 1.0Mdouble detonation model, and a 0.8Mdouble detonation model—and 13 metallicities, with22Ne mass fractions of 0, 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 2 × 10−3, 5 × 10−3, 1 × 10−2, 1.4 × 10−2, 5 × 10−2, and 0.1, respectively. Nucleosynthesis calculations are done using the NuGrid suite of codes, using a consistent nuclear reaction network between the models. Complete tables with yields and production factors are provided online at Zenodo:Yields (https://doi.org/10.5281/zenodo.8060323). We discuss the main properties of our yields in light of the present understanding of SN Ia nucleosynthesis, depending on different progenitor mass and composition. Finally, we compare our results with a number of relevant models from the literature. 
    more » « less
  2. ABSTRACT The origin of the proton-rich trans-iron isotopes in the Solar system is still uncertain. Single-degenerate thermonuclear supernovae (SNIa) with n-capture nucleosynthesis seeds assembled in the external layers of the progenitor’s rapidly accreting white dwarf (RAWD) phase may produce these isotopes. We calculate the stellar structure of the accretion phase of five white dwarf (WD) models with initial masses ≥ 0.85 $$\, \mathrm{M}_\odot$$ using the stellar code mesa The near-surface layers of the 1, 1.26, 1.32 and 1.38 $$\, \mathrm{M}_\odot$$ models are most representative of the regions in which the bulk of the p nuclei are produced during SNIa explosions, and for these models we also calculate the neutron-capture nucleosynthesis in the external layers. Contrary to previous RAWD models at lower mass, we find that the H-shell flashes are the main site of n-capture nucleosynthesis. We find high neutron densities up to several 1015 cm−3 in the most massive WDs. Through the recurrence of the H-shell flashes these intermediate neutron densities can be sustained effectively for a long time leading to high-neutron exposures with a strong production up to Pb. Both the neutron density and the neutron exposure increase with increasing the mass of the accreting WD. Finally, the SNIa nucleosynthesis is calculated using the obtained abundances as seeds. We obtain solar to supersolar abundances for p-nuclei with A > 96. Our models show that SNIa are a viable p-process production site. 
    more » « less
  3. Abstract Recent studies have highlighted the sensitivity of core-collapse supernovae (CCSNe) models to electron-capture (EC) rates on neutron-rich nuclei near theN= 50 closed-shell region. In this work, we perform a large suite of one-dimensional CCSN simulations for 200 stellar progenitors using recently updated EC rates in this region. For comparison, we repeat the simulations using two previous implementations of EC rates: a microphysical library with parametrizedN= 50 rates (LMP), and an older independent-particle approximation (IPA). We follow the simulations through shock revival up to several seconds post-bounce, and show that the EC rates produce a consistent imprint on CCSN properties, often surpassing the role of the progenitor itself. Notable impacts include the timescale of core collapse, the electron fraction and mass of the inner core at bounce, the accretion rate through the shock, the success or failure of revival, and the properties of the central compact remnant. We also compare the observable neutrino signal of the neutronization burst in a DUNE-like detector, and find consistent impacts on the counts and mean energies. Overall, the updated rates result in properties that are intermediate between LMP and IPA, and yet slightly more favorable to explosion than both. 
    more » « less
  4. Context. The γ -process nucleosynthesis in core-collapse supernovae is generally accepted as a feasible process for the synthesis of neutron-deficient isotopes beyond iron. However, crucial discrepancies between theory and observations still exist: the average yields of γ -process nucleosynthesis from massive stars are still insufficient to reproduce the solar distribution in galactic chemical evolution calculations, and the yields of the Mo and Ru isotopes are a factor of ten lower than the yields of the other γ -process nuclei. Aims. We investigate the γ -process in five sets of core-collapse supernova models published in the literature with initial masses of 15, 20, and 25 M ⊙ at solar metallicity. Methods. We compared the γ -process overproduction factors from the different models. To highlight the possible effect of nuclear physics input, we also considered 23 ratios of two isotopes close to each other in mass relative to their solar values. Further, we investigated the contribution of C–O shell mergers in the supernova progenitors as an additional site of the γ -process. Results. Our analysis shows that a large scatter among the different models exists for both the γ -process integrated yields and the isotopic ratios. We find only ten ratios that agree with their solar values, all the others differ by at least a factor of three from the solar values in all the considered sets of models. The γ -process within C–O shell mergers mostly influences the isotopic ratios that involve intermediate and heavy proton-rich isotopes with A  > 100. Conclusions. We conclude that there are large discrepancies both among the different data sets and between the model predictions and the solar abundance distribution. More calculations are needed; particularly updating the nuclear network, because the majority of the models considered in this work do not use the latest reaction rates for the γ -process nucleosynthesis. Moreover, the role of C–O shell mergers requires further investigation. 
    more » « less
  5. Abstract Type Ibn supernovae (SNe) are a rare class of stellar explosions whose progenitor systems are not yet well determined. We present and analyze observations of the Type Ibn SN 2019kbj, and model its light curve in order to constrain its progenitor and explosion parameters. SN 2019kbj shows roughly constant temperature during the first month after peak, indicating a power source (likely circumstellar material interaction) that keeps the continuum emission hot at ∼15,000 K. Indeed, we find that the radioactive decay of56Ni is disfavored as the sole power source of the bolometric light curve. A radioactive decay + circumstellar material (CSM) interaction model, on the other hand, does reproduce the bolometric emission well. The fits prefer a uniform-density CSM shell rather than CSM due to a steady mass-loss wind, similar to what is seen in other Type Ibn SNe. The uniform-density CSM shell model requires ∼0.1Mof56Ni and ∼1Mtotal ejecta mass to reproduce the light curve. SN 2019kbj differs in this manner from another Type Ibn SN with derived physical parameters, SN 2019uo, for which an order of magnitude lower56Ni mass and larger ejecta mass were derived. This points toward a possible diversity in SN Ibn progenitor systems and explosions. 
    more » « less