Abstract Quenching of star formation in the central galaxies of cosmological halos is thought to result from energy released as gas accretes onto a supermassive black hole. The same energy source also appears to lower the central density and raise the cooling time of baryonic atmospheres in massive halos, thereby limiting both star formation and black hole growth, by lifting the baryons in those halos to greater altitudes. One predicted signature of that feedback mechanism is a nearly linear relationship between the central black hole’s mass (MBH) and the original binding energy of the halo’s baryons. We present the increasingly strong observational evidence supporting a such a relationship, showing that it extends up to halos of massMhalo∼ 1014M⊙. We then compare current observational constraints on theMBH–Mhalorelation with numerical simulations, finding that black hole masses in IllustrisTNG appear to exceed those constraints atMhalo< 1013M⊙and that black hole masses in EAGLE fall short of observations atMhalo∼ 1014M⊙. A closer look at IllustrisTNG shows that quenching of star formation and suppression of black hole growth do indeed coincide with black hole energy input that lifts the halo’s baryons. However, IllustrisTNG does not reproduce the observedMBH–Mhalorelation because its black holes gain mass primarily through accretion that does not contribute to baryon lifting. We suggest adjustments to some of the parameters in the IllustrisTNG feedback algorithm that may allow the resulting black hole masses to reflect the inherent links between black hole growth, baryon lifting, and star formation among the massive galaxies in those simulations.
more »
« less
Ne viii in the Warm-hot Circumgalactic Medium of FIRE Simulations and in Observations
Abstract The properties of warm-hot gas around ∼L*galaxies can be studied with absorption lines from highly ionized metals. We predict Neviiicolumn densities from cosmological zoom-in simulations of halos with masses in ∼1012and ∼1013M☉from the Feedback in Realistic Environments (FIRE) project. Neviiitraces the volume-filling, virial-temperature gas in ∼1012M☉halos. In ∼1013M☉halos the Neviiigas is clumpier, and biased toward the cooler part of the warm-hot phase. We compare the simulations to observations from the COS Absorption Survey of Baryon Harbors (or CASBaH) and COS Ultraviolet Baryon Survey (or CUBS). We show that when inferring halo masses from stellar masses to compare simulated and observed halos, it is important to account for the scatter in the stellar-mass–halo-mass relation, especially atM⋆≳ 1010.5M☉. Median Neviiicolumns in the fiducial FIRE-2 model are about as high as observed upper limits allow, while the simulations analyzed do not reproduce the highest observed columns. This suggests that the median Neviiiprofiles predicted by the simulations are consistent with observations, but that the simulations may underpredict the scatter. We find similar agreement with analytical models that assume a product of the halo gas fraction and metallicity (relative to solar) ∼0.1, indicating that observations are consistent with plausible circumgalactic medium temperatures, metallicities, and gas masses. Variants of the FIRE simulations with a modified supernova feedback model and/or active galactic nuclei feedback included (as well as some other cosmological simulations from the literature) more systematically underpredict Neviiicolumns. The circumgalactic Neviiiobservations therefore provide valuable constraints on simulations that otherwise predict realistic galaxy properties.
more »
« less
- PAR ID:
- 10543676
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 973
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 99
- Size(s):
- Article No. 99
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We make an in-depth analysis of different active galactic nuclei (AGN) jet models’ signatures, inducing quiescence in galaxies with a halo mass of 1012M⊙. Three jet models, including cosmic-ray-dominant, hot thermal, and precessing kinetic jets, are studied at two energy flux levels each, compared to a jet-free, stellar feedback-only simulation. Each of our simulations is idealized isolated galaxy simulations with AGN jet powers that are constant in time and generated using GIZMO and with FIRE stellar feedback. We examine the distribution of Mgii, Ovi, and Oviiiions, alongside gas temperature and density profiles. Low-energy ions, like Mgii, concentrate in the interstellar medium (ISM), while higher energy ions, e.g., Oviii, prevail at the AGN jet cocoon’s edge. High-energy flux jets display an isotropic ion distribution with lower overall density. High-energy thermal or cosmic-ray jets pressurize at smaller radii, significantly suppressing core density. The cosmic-ray jet provides extra pressure support, extending cool and warm gas distribution. A break in the ion-to-mass ratio slope in Oviand Oviiiis demonstrated in the ISM-to-circumgalactic medium (CGM) transition (between 10 and 30 kpc), growing smoothly toward the CGM at greater distances.more » « less
-
Abstract The presence of dense, neutral hydrogen clouds in the hot, diffuse intragroup and intracluster (IC) medium is an important clue to the physical processes controlling the survival of cold gas and sheds light on cosmological baryon flows in massive halos. Advances in numerical modeling and observational surveys mean that theory and observational comparisons are now possible. In this paper, we use the high-resolution TNG50 cosmological simulation to study the Hidistribution in seven halos with masses similar to the Fornax galaxy cluster. Adopting observational sensitivities similar to the MeerKAT Fornax Survey (MFS), an ongoing Hisurvey that will probe to column densities of 1018cm−2, we find that Fornax-like TNG50 halos have an extended distribution of neutral hydrogen clouds. Within 1Rvir, we predict the MFS will observe a total Hicovering fraction of ∼12% (mean value) for 10 kpc pixels and 6% for 2 kpc pixels. If we restrict this to gas more than 10 half-mass radii from galaxies, the mean values only decrease mildly, to 10% (4%) for 10 (2) kpc pixels (albeit with significant halo-to-halo spread). Although there are large amounts of Hioutside of galaxies, the gas seems to be associated with satellites, judging both by the visual inspection of projections and by comparison of the line of sight velocities of galaxies and IC Hi.more » « less
-
Abstract Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (108.5<M⋆/M⊙< 109.6) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structures, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in situ, largely via the outward migration of disk stars. However, there also exists a large population of “nondisky” dwarfs in FIRE-2 that lack a well-defined disk/halo and do not resemble the observed dwarf population. These nondisky dwarfs tend to be either more gas-poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxy’s intrinsic shape—which is a direct quantification of the distribution of the galaxy’s stellar content—to interrogate the feedback implementation in simulated galaxies.more » « less
-
Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with based on their high ionization fractions in the CGM.more » « less
An official website of the United States government
