skip to main content


This content will become publicly available on March 21, 2025

Title: Full RIS-domain Standing Waves for Elements' Biasing
An innovative method has developed recently for biasing the varactors of a reconfigurable intelligent surface (RIS) by utilizing resonant standing waves on the “biasing transmission line (TL)” [E. Ayanoglu, F. Capolino, and A. L. Swindlehurst, “Wave-controlled metasurface-based reconfigurable intelligent surfaces,” IEEE Wireless Communications, vol. 29, no. 4, pp. 86-92,2022] located beneath the reflective surface. Using this approach, each RIS element does not require separate external biasing. For estimating the RIS reflection properties controlled by varactors, we analyze a planar array with phase gradient in one direction, of side length L, of reconfigurable elements. We employ the analytical model for predicting the reflection coefficients of the unit cells presented in [D. Hanna, M. Saavedra-Melo, F. Shan, and F. Capolino, “A versatile polynomial model for reflection by a reflective intelligent surface with varactors,” IEEE AP-S/URSI, 2022] and investigate how the standing wave biasing approach compares with the traditional way to generate field patterns of the reflected wave.  more » « less
Award ID(s):
2030029
PAR ID:
10543693
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-946815-19-4
Page Range / eLocation ID:
93 to 93
Format(s):
Medium: X
Location:
Boulder, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel method for biasing the varactors of a reconfigurable intelligent surface (RIS) by using resonant standing waves on the biasing transmission line (TL) at a layer below the RF reflective surface to eliminate the need to bring external bias for each element of the RIS is described. We use an analytical model of the RIS to compare the field pattern of the reflected wave by (i) considering the ideal case, (ii) the case where reflection accounts for the varactor's model, and (iii) the case as in (ii) but where the biasing voltage distribution is constructed by using the wave control (i.e., standing waves). 
    more » « less
  2. An analytical model for reflection of a reconfigurable intelligent surface (RIS) using varactors to adjust the reflection phase of an incident plane wave is presented. The model results are compared to a full-wave RIS simulation for different varactor bias voltages. The model is intended to be analytical and simple enough, but related to a realistic RIS, to be inserted into MIMO wireless systems algorithms to estimate the propagation channel including the RIS. 
    more » « less
  3. Reconfigurable Intelligent Surfaces (RIS) also known as Intelligent Reflecting Surfaces (IRS) often depend upon metasurfaces. These typically comprise of a large array of passive elements that can be fabricated to modulate reflection amplitude or phase or both to create tunable functions that are independently controlled. Various RIS are developed to improve spectral efficiency through ultrawideband antennas, enhanced beamforming with higher gain and bandwidth, spatial reconfigurability, selective and adjustable isolation, and other desired features. Several approaches to tune the RIS performance are being explored. This paper reviews the primary approaches and the benefit of emerging tunable nanomaterials in achieving such RIS functions. Designs with 1-bit and 6-bit phase shifters are discussed in the first part. Various opportunities with nanomaterials and nanodevices to induce such phase shifts are discussed in the last part of the paper. 
    more » « less
  4. Reconfigurable Intelligent Surfaces (RIS) also known as Intelligent Reflecting Surfaces (IRS) often depend upon metasurfaces. These typically comprise of a large array of passive elements that can be fabricated to modulate reflection amplitude or phase or both to create tunable functions that are independently controlled. Various RIS are developed to improve spectral efficiency through ultrawideband antennas, enhanced beamforming with higher gain and bandwidth, spatial reconfigurability, selective and adjustable isolation, and other desired features. Several approaches to tune the RIS performance are being explored. This paper reviews the primary approaches and the benefit of emerging tunable nanomaterials in achieving such RIS functions. Designs with 1-bit and 6-bit phase shifters are discussed in the first part. Various opportunities with nanomaterials and nanodevices to induce such phase shifts are discussed in the last part of the paper. 
    more » « less
  5. Non-orthogonal multiple access (NOMA) has become a promising technology for next-generation wireless communications systems due to its capability to provide access for multiple users on the same resource. In this paper, we consider an uplink power-domain NOMA system aided by a reconfigurable intelligent surface (RIS) in the presence of a jammer that aims to maximize its interference on the base station (BS) uplink receiver. We consider two kinds of RISs, a regular RIS whose elements can only change the phase of the incoming wave, and an RIS whose elements can also attenuate the incoming wave. Our aim is to minimize the total power transmitted by the user terminals under quality-of-service constraints by controlling both the propagation from the users and the jammer to the BS with help of the RIS. The resulting objective function and constraints are both non-linear and non-convex, so we address this problem using numerical optimization. Our numerical results show that the RIS can help to dramatically reduce the per user required transmit power in an interference-limited scenario. 
    more » « less