skip to main content


Title: Wave-Controlled RIS: A Novel Method for Reconfigurable Elements Biasing
A novel method for biasing the varactors of a reconfigurable intelligent surface (RIS) by using resonant standing waves on the biasing transmission line (TL) at a layer below the RF reflective surface to eliminate the need to bring external bias for each element of the RIS is described. We use an analytical model of the RIS to compare the field pattern of the reflected wave by (i) considering the ideal case, (ii) the case where reflection accounts for the varactor's model, and (iii) the case as in (ii) but where the biasing voltage distribution is constructed by using the wave control (i.e., standing waves).  more » « less
Award ID(s):
2030029
PAR ID:
10543696
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-4228-2
Page Range / eLocation ID:
979 to 980
Format(s):
Medium: X
Location:
Portland, OR, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. An innovative method has developed recently for biasing the varactors of a reconfigurable intelligent surface (RIS) by utilizing resonant standing waves on the “biasing transmission line (TL)” [E. Ayanoglu, F. Capolino, and A. L. Swindlehurst, “Wave-controlled metasurface-based reconfigurable intelligent surfaces,” IEEE Wireless Communications, vol. 29, no. 4, pp. 86-92,2022] located beneath the reflective surface. Using this approach, each RIS element does not require separate external biasing. For estimating the RIS reflection properties controlled by varactors, we analyze a planar array with phase gradient in one direction, of side length L, of reconfigurable elements. We employ the analytical model for predicting the reflection coefficients of the unit cells presented in [D. Hanna, M. Saavedra-Melo, F. Shan, and F. Capolino, “A versatile polynomial model for reflection by a reflective intelligent surface with varactors,” IEEE AP-S/URSI, 2022] and investigate how the standing wave biasing approach compares with the traditional way to generate field patterns of the reflected wave. 
    more » « less
  2. An analytical model for reflection of a reconfigurable intelligent surface (RIS) using varactors to adjust the reflection phase of an incident plane wave is presented. The model results are compared to a full-wave RIS simulation for different varactor bias voltages. The model is intended to be analytical and simple enough, but related to a realistic RIS, to be inserted into MIMO wireless systems algorithms to estimate the propagation channel including the RIS. 
    more » « less
  3. Large-eddy simulations (LESs) of low-Reynolds-number flow (Re=50,000) over a NACA0018 airfoil are performed to investigate flow control at the stall angle of attack (15 deg) by low-amplitude surface waves (actuations) of different types (backward/forward traveling and standing waves) on the airfoil’s suction side. It is found that the backward (toward downstream) traveling waves, inspired from aquatic swimmers, are more effective than forward traveling and standing wave actuations. The results of simulations show that a backward traveling wave with a reduced frequency f∗=4 (f∗=fL/U, where f is frequency; L, chord length; and U, free flow velocity), a nondimensional wavelength λ∗=0.2 (λ∗=λ/L, where λ is dimensional wavelength), and a nondimensional amplitude a∗=0.002 (a∗=a/L, where a is dimensional amplitude) can suppress stall. In contrast, the flow over the airfoil with either standing or forward traveling wave actuations separates from the leading edge similar to the baseline. Consequently, the backward traveling wave creates the highest lift-to-drag ratio. For traveling waves at a higher amplitude (a∗=0.008), however, the shear layer becomes unstable from the actuation point and creates periodic coherent structures. Therefore, the lift coefficient decreases compared with the low-amplitude case. 
    more » « less
  4. Abstract

    The main subject of this study is the low‐frequency (with the periods longer than 2 hr) wave processes in the coupled regional system of the Ross Ice Shelf (RIS), the Ross Sea and the atmosphere above them. We investigate possible causal relationships between the wave activity in the three media using a unique set of geophysical instruments: a hydrophone measuring pressure variations on the seafloor, a network of seismometers measuring vertical displacements of the RIS surface, and a Dynasonde system measuring wave characteristics at the ionospheric altitudes. We present an extension of the previously introduced theoretical model of the coupled resonance vibrations of the RIS that quantifies the connection between the ocean tide and the resonance vibrations of the RIS. The ocean tide is confirmed as the most significant source of excitation of the resonances. Analysis of average power spectra in year‐long data sets reveals multiple harmonics of the tide (eight) detected by the RIS seismometers while only three are detected by the seafloor sensor. This may represent a confirmation of the effect of resonance‐related broadband amplification predicted by the model. Several peaks in the spectrum of RIS vibrations have periods different from the periods of nearby tidal constituents and may be associated with broad‐scale resonance RIS vibrations. Resonances may play a role in maintaining the coupled atmosphere‐ocean wave activity. Our results reveal a statistically significant correlation between the spectra of the vertical displacements of the RIS and the spectra of the atmospheric waves.

     
    more » « less
  5. null (Ed.)
    A part of the Southern Ocean, the Ross Sea, together with the Ross Ice Shelf and the atmosphere over the region represent a coupled system with respect to the low-frequency (with the periods longer than 1 hour) wave processes observed in the three media. We study interconnections between them using a unique combination of geophysical sensors: hydrophones measuring pressure variations on the bottom of the open ocean, seismographs measuring vertical displacements of the surface of the Ross Ice Shelf, and the Jang Bogo Dynasonde system measuring wave parameters at the altitudes of the lower thermosphere. Analysis of a year-long data sets from Ross Ice Shelf-based instruments reveals presence in their average power spectra of the peaks in the 2-11 hours period range that may be associated with the low-order resonance vibrations of the system. More harmonics of the 24 hour tide (seven) are detected by the RIS seismographs compared to the sea floor sensor (where only two are clearly visible). This may be a consequence of the RIS resonance-related broadband amplification effect predicted by our model. There are several peaks in the RIS vibration spectrum (T = 8.37, 8.23, 6.3 and 6.12 hours) that are not detected by the hydrophone and may be directly related to RIS resonances. The prominent T = 25.81 hour peak is a likely candidate for the sub-inertial RIS resonance. The periods of lower RIS resonance modes predicted by our simple model and the observed spectral peaks are in the same general band. This is the first direct observation of the resonance effects in vibrations of the Ross Ice Shelf. Our results demonstrate the key role of the resonances of the Ross Ice Shelf in maintaining the wave activity in the entire coupled system. We suggest that the ocean tide is a major source of excitation of the Ross Ice Shelf’s resonances. The ice shelf vibrations may also be supported by the energy transfer from wind, swell, and infragravity wave energy that couples with the ice shelf. Overlapping 6-month-long data sets reveal a significant linear correlation between the spectra of the vertical shifts of the Ross Ice Shelf and of the thermospheric waves with the periods of about 2.1, 3.7, and 11.1 hours. This result corroborates earlier lidar observations of persistent atmospheric wave activity over McMurdo. We propose a theory that quantifies the nexus between the ocean tide and the resonance vibrations of the Ross Ice Shelf. It complements the theoretical model of the process of generating the atmospheric waves by the resonance vibrations of the Ross Ice Shelf published by us earlier. 
    more » « less