skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gulf toadfish (Opsanus beta) gill neuroepithelial cells in response to hypoxia exposure
Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.  more » « less
Award ID(s):
1754550
PAR ID:
10543716
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
Journal of Comparative Physiology B
Volume:
194
Issue:
2
ISSN:
0174-1578
Page Range / eLocation ID:
167 to 177
Subject(s) / Keyword(s):
Serotonin Filament Lamellae NEC size NEC number NEC distribution
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Plasma serotonin (5-hydroxytryptamine, 5-HT) homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO) and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia, resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 Torr) or 2 min, 40 min or 24 h mild hypoxia (50% O2 saturation, ∼80 Torr), then injected with radiolabeled [3H]5-HT before blood, urine, bile and tissues were sampled. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart. 
    more » « less
  2. ABSTRACT Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life. 
    more » « less
  3. ABSTRACT Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000–10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid–base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid–base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin–O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid–base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3− in blood, which increased from ∼4 to ∼22 mmol l−1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid–base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3− and pH, probably because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid–base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments. 
    more » « less
  4. ABSTRACT Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses. 
    more » « less
  5. ABSTRACT The developmental regulation of body size is a fundamental life-history characteristic that in most animals is tied to the transition from juvenile to adult form. In holometabolous insects, this transition is ostensibly initiated at the attainment of a critical weight in the final larval instar. It has been hypothesized that the size-sensing mechanism used to determine attainment of critical weight exploits oxygen limitation as a larvae grows beyond the oxygen-delivery capacity of its fixed tracheal system; that is, developmentally induced cellular hypoxia initiates the synthesis of the molting hormone ecdysone by the prothoracic gland. We tested this hypothesis in Drosophila by assaying cellular hypoxia throughout the third larval instar at 21 and 10 kPa O2, using the activity of the HIF (hypoxia inducible factor)-signaling pathway as a measure of hypoxia. While HIF signaling was elevated at low levels of environmental O2, it did not markedly increase during development at either oxygen level, and was only suppressed by hyperoxia after feeding had ceased. Further, changes in HIF signaling in the prothoracic gland alone did not alter body size or developmental time in a way that would be expected if cellular hypoxia in the prothoracic gland was part of the critical weight mechanism. Our data do show, however, that reduced HIF signaling in the prothoracic gland decreases survival and retards development at 10 kPa O2, suggesting that prothoracic HIF signaling is a necessary part of the beneficial plasticity mechanism that controls growth and development in response to low oxygen level. 
    more » « less