CoNi-based superalloys offer excellent high-temperature properties; yet, Co is also a strategic alloying element, and its content should only be as high as necessary. This study investigates Fe as a partial substitute for Co to reduce costs while evaluating its impact on mechanical properties. To evaluate this, we systematically investigate the effect of Fe substitutions on thermophysical properties, microstructure, partitioning behavior, lattice misfit, yield strength, and creep performance of three polycrystalline CoNi-based superalloys derived from CoWAlloy1 (Co–32Ni–12Cr–6Al–3W–2.5Ti–1.5Ta–0.4Si–0.1Hf–0.08B all in at. %). In these alloys, 4, 8, and 12 at. % Co is replaced with Fe. Increasing Fe content results in a gradual reduction in the solvus, solidus, and liquidus temperatures by 3.0, 1.9, and 1.4 °C per at. % Fe, respectively. The γ′ volume fraction and the lattice misfit decrease by about 0.7% and 0.01%, respectively, per at. % Fe substitution for Co. Fe predominantly partitions to the γ matrix, enhancing the partitioning of Co and Ni while reducing that of Al, Cr, and Ta, with no significant effect on Ti and W. Substituting Co with Fe moderately reduces yield and creep strength, primarily due to the decreasing γ′ volume fraction and a transition in the dominant deformation mechanisms from stacking fault shearing and microtwinning to matrix-based deformation as Fe content increases. Beneficial elemental segregation behaviors and localized phase transformations along creep-induced stacking faults remain active in alloys with high Fe content. These findings highlight the potential of Fe alloying to reduce costs while maintaining high-temperature strength in CoNi-based superalloys. 
                        more » 
                        « less   
                    
                            
                            Deformation Mechanisms Rationalisation to Design for Creep Resistance in Polycrystalline Ni-Based Superalloys
                        
                    
    
            Creep strength in polycrystalline Ni-based superalloys is influenced by the formation of a rich variety of planar faults forming within the strengthening γ' phase. The lengthening and thickening rate of these faults – and therefore the creep rate – depends on an intriguing combination of dislocation interactions at the γ/γ' interface and diffusional processes of the alloying elements at the core of the fault tip. The effect of alloy composition on this process is not fully understood. In this work we use correlative high resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy to study the deformation faults in two different Ni-based superalloys with carefully designed ratios of disordering-to-ordering-promoting elements (Co-Cr against Nb-Ta-Ti). The results show that the additions of ordering-promoting elements reduce the diffusional processes required for the faults to lengthen and thicken thus reducing the creep rates found for the higher Nb-Ta-Ti alloy. These insights provide a path to follow in the design of improved grades of creep-resistant polycrystalline alloys beyond 700 °C. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2323717
- PAR ID:
- 10543917
- Publisher / Repository:
- link.springer.com
- Date Published:
- Journal Name:
- Metallurgical and Materials Transactions A
- Volume:
- 54
- Issue:
- 5
- ISSN:
- 1073-5623
- Page Range / eLocation ID:
- 1886 to 1901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Here, we study the homogenization behavior and microstructure of seven Ni-Al-Ti alloys with quaternary additions of γ forming elements 4Cr, 4Co, 4Ru, 4Mo, 4Hf, 4 W and 2Re. To design a homogenization treatment, the as-cast microstructure is analyzed revealing the diffusion distances x between dendrite cores and interdendritic regions. The temperatures for homogenization are determined using differential scanning calorimetry (DSC) and Thermo-Calc simulations, to be between 1150 and 1275 °C. The time to achieve homogenization is modelled based on the residual segregation index δ utilizing diffusion distance, homogenization temperature and diffusion data. Electron probe micro analyzer (EPMA) measurements show that our predictions match for the 4Cr, 4Co, 4Ru, 4 W and 2Re alloys while the 4Hf alloy shows insufficient homogenization. Transmission electron microscopy (TEM) reveals a two-phase γ/γ’ microstructure after 750 °C / 24 h, whereby the 4Co and 4Ru alloys form hierarchical microstructures. We observe γ plates in the 4Co alloy and γ spheres in the 4Ru alloy. Ru in the 4Ru alloy is involved in stabilizing the morphology of γ spheres. We provide a straightforward method for the design of homogenization treatments of Ni-based superalloys and demonstrate an alloy design pathway for tailoring the phase stability of hierarchical microstructures.more » « less
- 
            Directed energy deposition (DED)-based additive manufacturing (AM) was employed to fabricate three distinct bimetallic compositions to understand the role interface for the deformation behavior of bimetallic structures under compressive loading. Commercially pure titanium (CP Ti) with a hexagonal closed packed (HCP) structure, nickel (Ni) with a face-centered cubic (FCC), and tantalum (Ta) with a body-centered cubic (BCC) structure were selected to understand the deformation behavior within the pure metals and damage accumulation at the bimetallic interface. By incorporating the combination of these materials, such as Ni-Ti, Ni-Ta, and Ta-Ti, we aimed to manufacture layered-base polycrystalline composite structures with FCC-HCP, FCC-BCC, and BCC-HCP crystal unit cells, respectively. In Ni-Ti and Ni-Ta bimetallic structures, it was determined that deformation is controlled by the Ni region, where the highest deflection occurs when Ni bulges out and makes lateral stress at the interface, resulting in crack initiation, propagation, and failure of the structure. Structural edges were found to experience the highest deformation, prompting grain inclination towards the <111> crystal orientation, resulting in a favorable orientation for dislocation slip and a higher Taylor factor. However, strong interfacial bonding and similar Young's modulus between Ta and Ti altered the deformation mechanisms to twinning formation in the Ti region and observed buckling of the entire structure without significant failure at the interface.more » « less
- 
            Gamma-prime strengthened Co–Al–W-based superalloys offer a unique combination of weldability, mechanical strength, creep resistance, and environmental resistance at temperature—leading many to consider the system as an alternative to nickel-base superalloys for future generation turbine engine hardware. However, little information exists regarding the deformation processing required to turn these novel alloys into useable product forms with appropriate microstructure refinement. Supersolvus thermomechanical processing sequences were successfully demonstrated using right-cylindrical upset specimens for two wrought γ′-strengthened cobalt-base superalloys at industrially relevant temperatures and deformation rates. Hot flow behavior and microstructure evolution were quantitatively characterized and compared to available information on a legacy nickel-base system, Waspaloy. Further, density functional theory was used to explore the compositional dependency of the intrinsic material properties influencing single-phase hot working behavior of model Ni–Al binary and Co–Al–W ternary systems. The apparent similarity in the supersolvus thermomechanical processing behavior of Co–Al–W-base systems and their two-phase γ–γ′ Ni-base counterparts suggests conventional pathways, models, and equipment may be leveraged to speed transition and implementation of wrought Co–Al–W-base alloys for components where their properties may be advantageous.more » « less
- 
            In this investigation, we explore the impact of the Nb–Al ratio on the microstructural and mechanical properties of high-entropy superalloys (HESAs), focusing on hierarchical microstructures. Utilizing a series of HESAs with varying Nb–Al ratios, our study employs advanced characterization techniques, including differential scanning calorimetry (DSC) for thermal analysis, electron probe micro-analyzer (EPMA) for compositional analysis for the design of a homogenization treatment at 1500 K/24 h. Transmission electron microscopy (TEM) reveals that the increasing Nb–Al ratio refines the γ' precipitates and influences the size and volume fraction of embedded hierarchical γ particles. ThermoCalc equilibrium phase analysis and Vegard's-law calculations reveal a minimal lattice misfit between these phases, highlighting the interplay between Nb–Al ratio and phase stability. The increasing Nb–Al ratio inhibits the formation of hierarchical γ particles. We observe an enhancement in hardness from 433 HV to 492 HV with an increasing Nb–Al ratio. This study provides valuable insights into the role of Nb and the Nb–Al ratio in HESAs with hierarchical microstructures, demonstrating its significant influence on γ particle formation within γ' precipitates and mechanical strength. The findings advance our understanding of alloy design and pave the way for developing advanced HESAs for high-temperature applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    