skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Evaluation and Rating of Product Repairability Using Artificial Intelligence-Based Approaches
Abstract Despite the importance of product repairability, current methods for assessing and grading repairability are limited, which hampers the efforts of designers, remanufacturers, original equipment manufacturers (OEMs), and repair shops. To improve the efficiency of assessing product repairability, this study introduces two artificial intelligence (AI) based approaches. The first approach is a supervised learning framework that utilizes object detection on product teardown images to measure repairability. Transfer learning is employed with machine learning architectures such as ConvNeXt, GoogLeNet, ResNet50, and VGG16 to evaluate repairability scores. The second approach is an unsupervised learning framework that combines feature extraction and cluster learning to identify product design features and group devices with similar designs. It utilizes an oriented FAST and rotated BRIEF feature extractor (ORB) along with k-means clustering to extract features from teardown images and categorize products with similar designs. To demonstrate the application of these assessment approaches, smartphones are used as a case study. The results highlight the potential of artificial intelligence in developing an automated system for assessing and rating product repairability.  more » « less
Award ID(s):
2026276
PAR ID:
10543995
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
146
Issue:
2
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rickli, Jeremy (Ed.)
    This paper aims to introduce an Artificial Intelligence (AI) guided computational framework for the automatic identification, inspection, assessment, and remanufacturing of end-of-use products. The proposed framework consists of three main steps: (1) developing computer vision and image processing algorithms for analyzing product teardown images, (2) quantifying the economic and environmental value of remanufacturing from product images, and (3) developing recommender algorithms to identify the best recovery decision for each device. The paper discusses the importance of advancing object detection, image segmentation, and machine learning algorithms to automatically compute the value embedded in discarded items and developing recommendation systems to determine remanufacturing operations from product configurations. The main focus of the paper is on the value assessment and remanufacturing of electronic waste (e-waste). The paper emphasizes the need for developing object detection for identifying small objects (e.g., screws, bolts, snaps) and overlapped components (e.g., cables, printed circuit boards) standard in the design of consumer electronics by incorporating product shapes and features. The proposed value assessment framework has applications beyond remanufacturing and can be used in take-back programs and other business models that benefit from product serialization and assessment of individual devices. 
    more » « less
  2. Abstract Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data. 
    more » « less
  3. Taking incompatible multiple drugs together may cause adverse interactions and side effects on the body. Accurate prediction of drug-drug interaction (DDI) events is essential for avoiding this issue. Recently, various artificial intelligence-based approaches have been proposed for predicting DDI events. However, DDI events are associated with complex relationships and mechanisms among drugs, targets, enzymes, transporters, molecular structures, etc. Existing approaches either partially or loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for prediction. Different from them, this paper proposes a Multimodal Knowledge Graph Fused End-to-end Neural Network (MKGFENN) that consists of two main parts: multimodal knowledge graph (MKG) and fused end-to-end neural network (FENN). First, MKG is constructed by comprehensively exploiting DDI events-associated relationships and mechanisms from four knowledge graphs of drugs-chemical entities, drug-substructures, drugs-drugs, and molecular structures. Correspondingly, a four channels graph neural network is designed to extract high-order and semantic features from MKG. Second, FENN designs a multi-layer perceptron to fuse the extracted features by end-to-end learning. With such designs, the feature extractions and fusions of DDI events are guaranteed to be comprehensive and optimal for prediction. Through extensive experiments on real drug datasets, we demonstrate that MKG-FENN exhibits high accuracy and significantly outperforms state-of-the-art models in predicting DDI events. The source code and supplementary file of this article are available on: https://github.com/wudi1989/MKG-FENN. 
    more » « less
  4. Abstract This paper presents a novel approach for generating metamaterial designs by leveraging texture information learned from stochastic microstructure samples with exceptional mechanical properties. This eXplainable Artificial Intelligence (XAI)-based approach reduces the reliance of brainstorming and trial-and-error in inspiration-driven design practices. The key research question is whether the texture information extracted from stochastic microstructure samples can be used to design metamaterials with periodic structural patterns that surpass the original stochastic microstructures in mechanical properties. The proposed approach employs a pretrained supervised neural network and applies the Activation Maximization Texture Synthesis (AMTS) method to extract representative textures from high-performance stochastic microstructure samples. These textures serve as building blocks for creating novel periodic metamaterial designs. Using three benchmark cases of stochastic microstructure-inspired periodic metamaterial design, we compare the proposed approach with an earlier XAI design approach based on Gradient-weighted Regression Activation Mapping (Grad-RAM). Unlike the proposed approach, Grad-RAM extracts local microstructure patches directly from the original sample images rather than synthesizing representative textures to generate novel periodic metamaterial designs. Both XAI-based design approaches are evaluated based on the mechanical properties of the resulting designs. The relative merits of both approaches in terms of design performance and the need for human intervention are discussed. 
    more » « less
  5. Abstract This article presents a novel approach for generating metamaterial designs by leveraging texture information learned from stochastic microstructure samples with exceptional mechanical properties. This eXplainable Artificial Intelligence (XAI)-based approach reduces the reliance on brainstorming and trial-and-error in inspiration-driven design practices. The key research question is whether the texture information extracted from stochastic microstructure samples can be used to design metamaterials with periodic structural patterns that surpass the original stochastic microstructures in mechanical properties. The proposed approach employs a pretrained supervised neural network and applies the Activation Maximization Texture Synthesis (AMTS) method to extract representative textures from high-performance stochastic microstructure samples. These textures serve as building blocks for creating novel periodic metamaterial designs. Using three benchmark cases of stochastic microstructure-inspired periodic metamaterial design, we compare the proposed approach with an earlier XAI design approach based on Gradient-weighted Regression Activation Mapping (Grad-RAM). Unlike the proposed approach, Grad-RAM extracts local microstructure patches directly from the original sample images rather than synthesizing representative textures to generate novel periodic metamaterial designs. Both XAI-based design approaches are evaluated based on the mechanical properties of the resulting designs. The relative merits of both approaches in terms of design performance and the need for human intervention are discussed. 
    more » « less