Personalising decision-making assistance to different users and tasks can improve human-AI team performance, such as by appropriately impacting reliance on AI assistance. However, people are different in many ways, with many hidden qualities, and adapting AI assistance to these hidden qualities is difficult. In this work, we consider a hidden quality previously identified as important: overreliance on AI assistance. We would like to (i) quickly determine the value of this hidden quality, and (ii) personalise AI assistance based on this value. In our first study, we introduce a few probe questions (where we know the true answer) to determine if a user is an overrelier or not, finding that correctly-chosen probe questions work well. In our second study, we improve human-AI team performance, personalising AI assistance based on users’ overreliance quality. Exploratory analysis indicates that people learn different strategies of using AI assistance depending on what AI assistance they saw previously, indicating that we may need to take this into account when designing adaptive AI assistance. We hope that future work will continue exploring how to infer and personalise to other important hidden qualities.
more »
« less
Accuracy-Time Tradeoffs in AI-Assisted Decision Making under Time Pressure
In settings where users both need high accuracy and are time-pressured, such as doctors working in emergency rooms, we want to provide AI assistance that both increases decision accuracy and reduces decision-making time. Current literature focusses on how users interact with AI assistance when there is no time pressure, finding that different AI assistances have different benefits: some can reduce time taken while increasing overreliance on AI, while others do the opposite. The precise benefit can depend on both the user and task. In time-pressured scenarios, adapting when we show AI assistance is especially important: relying on the AI assistance can save time, and can therefore be beneficial when the AI is likely to be right. We would ideally adapt what AI assistance we show depending on various properties (of the task and of the user) in order to best trade off accuracy and time. We introduce a study where users have to answer a series of logic puzzles. We find that time pressure affects how users use different AI assistances, making some assistances more beneficial than others when compared to no-time-pressure settings. We also find that a user’s overreliance rate is a key predictor of their behaviour: overreliers and not-overreliers use different AI assistance types differently. We find marginal correlations between a user’s overreliance rate (which is related to the user’s trust in AI recommendations) and their personality traits (Big Five Personality traits). Overall, our work suggests that AI assistances have different accuracy-time tradeoffs when people are under time pressure compared to no time pressure, and we explore how we might adapt AI assistances in this setting.
more »
« less
- Award ID(s):
- 2107391
- PAR ID:
- 10544099
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400705083
- Page Range / eLocation ID:
- 138 to 154
- Format(s):
- Medium: X
- Location:
- Greenville SC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Shared control systems can make complex robot teleoperation tasks easier for users. These systems predict the user’s goal, determine the motion required for the robot to reach that goal, and combine that motion with the user’s input. Goal prediction is generally based on the user’s control input (e.g., the joystick signal). In this paper, we show that this prediction method is especially effective when users follow standard noisily optimal behavior models. In tasks with input constraints like modal control, however, this effectiveness no longer holds, so additional sources for goal prediction can improve assistance. We implement a novel shared control system that combines natural eye gaze with joystick input to predict people’s goals online, and we evaluate our system in a real-world, COVID-safe user study. We find that modal control reduces the efficiency of assistance according to our model, and when gaze provides a prediction earlier in the task, the system’s performance improves. However, gaze on its own is unreliable and assistance using only gaze performs poorly. We conclude that control input and natural gaze serve different and complementary roles in goal prediction, and using them together leads to improved assistance.more » « less
-
This research paper delves into the evolving landscape of fine-tuning large language models (LLMs) to align with human users, extending beyond basic alignment to propose "personality alignment" for language models in organizational settings. Acknowledging the impact of training methods on the formation of undefined personality traits in AI models, the study draws parallels with human fitting processes using personality tests. Through an original case study, we demonstrate the necessity of personality fine-tuning for AIs and raise intriguing questions about applying human-designed tests to AIs, engineering specialized AI personality tests, and shaping AI personalities to suit organizational roles. The paper serves as a starting point for discussions and developments in the burgeoning field of AI personality alignment, offering a foundational anchor for future exploration in human-machine teaming and co-existence.more » « less
-
It has long been observed that humans in interaction tend to adapt their behavior to become more similar to their interlocutors. Yet the reasons why such entrainment arises in some conversations and not others remain poorly understood. Early work suggests an influence of different personality traits on the degree of entrainment speakers engage in. However, some of these results have never been replicated to test their generalizability. Moreover, a recent finding draws into question whether these and other effects are strong enough to create differences between speakers that persist across multiple conversations. We investigate a variety of personality traits for their influence on a local form of acoustic-prosodic entrainment in two kinds of spontaneous conversation. To our knowledge, this is the first attempt to detect such effects across several interactions per subject and the first attempt to replicate some influential early work in a more natural context. We find virtually no impact of personality, suggesting that prior results might not generalize to a more natural context or entrainment on other linguistic variables.more » « less
-
AI-enabled decision-support systems aim to help medical providers rapidly make decisions with limited information during medical emergencies. A critical challenge in developing these systems is supporting providers in interpreting the system output to make optimal treatment decisions. In this study, we designed and evaluated an AI-enabled decision-support system to aid providers in treating patients with traumatic injuries. We first conducted user research with physicians to identify and design information types and AI outputs for a decision-support display. We then conducted an online experiment with 35 medical providers from six health systems to evaluate two human-AI interaction strategies: (1) AI information synthesis and (2) AI information and recommendations. We found that providers were more likely to make correct decisions when AI information and recommendations were provided compared to receiving no AI support. We also identified two socio-technical barriers to providing AI recommendations during time-critical medical events: (1) an accuracy-time trade-off in providing recommendations and (2) polarizing perceptions of recommendations between providers. We discuss three implications for developing AI-enabled decision support used in time-critical events, contributing to the limited research on human-AI interaction in this context.more » « less
An official website of the United States government

