skip to main content


Title: Climate-driven changes in the predictability of seasonal precipitation
Abstract

Climate-driven changes in precipitation amounts and their seasonal variability are expected in many continental-scale regions during the remainder of the 21st century. However, much less is known about future changes in the predictability of seasonal precipitation, an important earth system property relevant for climate adaptation. Here, on the basis of CMIP6 models that capture the present-day teleconnections between seasonal precipitation and previous-season sea surface temperature (SST), we show that climate change is expected to alter the SST-precipitation relationships and thus our ability to predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal precipitation predictability from SSTs is projected to increase throughout the year, except the northern Amazonia during boreal winter. Concurrently, in the extra-tropics predictability is likely to increase in central Asia during boreal spring and winter. The altered predictability, together with enhanced interannual variability of seasonal precipitation, poses new opportunities and challenges for regional water management.

 
more » « less
Award ID(s):
1930049 2023109 1934637 2224213
NSF-PAR ID:
10426646
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The double-ITCZ bias has puzzled the climate modeling community for more than two decades. Here we show that, over the northeastern Pacific Ocean, precipitation and sea surface temperature (SST) biases are seasonally dependent in the NCAR CESM1 and 37 CMIP5 models, with positive biases during boreal summer–autumn and negative biases during boreal winter–spring, although the easterly wind bias persists year round. This seasonally dependent bias is found to be caused by the model’s failure to reproduce the climatological seasonal wind reversal of the North American monsoon. During winter–spring, the observed easterly wind dominates, so the simulated stronger wind speed enhances surface evaporation and lowers SST. It is opposite when the observed wind turns to westerly during summer–autumn. An easterly wind bias, mainly evident in the lower troposphere, also occurs in the atmospheric model when the observed SST is prescribed, suggesting that it is of atmospheric origin. When the atmospheric model resolution is doubled in the CESM1, both SST and precipitation are improved in association with the reduced easterly wind bias. During boreal spring, when the double-ITCZ bias is most significant, the northern and southern ITCZ can be improved by 29.0% and 18.8%, respectively, by increasing the horizontal resolution in the CESM1. When dividing the 37 CMIP5 models into two groups on the basis of their horizontal resolutions, it is found that both the seasonally dependent biases over the northeastern Pacific and year-round biases over the southeastern Pacific are reduced substantially in the higher-resolution models, with improvement of ~30% in both regions during boreal spring. Close relationships between wind and precipitation biases over the northeastern and southeastern Pacific are also found among CMIP5 models.

     
    more » « less
  2. Abstract

    Greenhouse gas induced climate change is expected to lead to negative hydrological impacts for southwestern North America, including California (CA). This includes a decrease in the amount and frequency of precipitation, reductions in Sierra snow pack, and an increase in evapotranspiration, all of which imply a decline in surface water availability, and an increase in drought and stress on water resources. However, a recent study showed the importance of tropical Pacific sea surface temperature (SST) warming and an El Niño Southern Oscillation (ENSO)-like teleconnection in driving an increase in CA precipitation through the 21st century, particularly during winter (DJF). Here, we extend this prior work and show wetter (drier) CA conditions, based on several drought metrics, are associated with an El Niño (La Niña)-like SST pattern. Models that better simulate the observed ENSO-CA precipitation teleconnection also better simulate the ENSO-CA drought relationships, and yield negligible change in the risk of 21st century CA drought, primarily due to wetting during winter. Seasonally, however, CA drought risk is projected to increase during the non-winter months, particularly in the models that poorly simulate the observed teleconnection. Thus, future projections of CA drought are dependent on model fidelity of the El Niño teleconnection. As opposed to focusing on adapting to less water, models that better simulate the teleconnection imply adaptation measures focused on smoothing seasonal differences for affected agricultural, terrestrial, and aquatic systems, as well as effectively capturing enhanced winter runoff.

     
    more » « less
  3. Abstract

    The boreal summer climate is of significant societal importance and is trending toward increased risks of extreme climate events such as heatwaves. The summer North Atlantic Oscillation, as the primary mode of atmospheric variability in the northern hemisphere, has been long considered lacking predictability on seasonal time scales. Here we show that the summer North Atlantic Oscillation is predictable with a 2‐month lead for the recent decades. The primary predictor is the March North Atlantic jet strength, which is correlated with the summer North Atlantic Oscillation index at a correlation coefficient of 0.66 over 1979–2018. Spring stratosphere‐troposphere coupling plays a critical role in this extended predictability from spring to summer, in contrast to the common knowledge that this dynamical coupling is relatively inactive outside the winter season. These results may bring sound prospects for summer seasonal prediction of boreal climate that benefits the energy and public health sectors.

     
    more » « less
  4. Abstract

    Interannual sea surface temperature (SST) variations in the tropical Atlantic Ocean lead to anomalous atmospheric circulation and precipitation patterns with important ecological and socioeconomic consequences for the semiarid regions of sub-Saharan Africa and northeast Brazil. This interannual SST variability is characterized by three modes: an Atlantic meridional mode featuring an anomalous cross-equatorial SST gradient that peaks in boreal spring; an Atlantic zonal mode (Atlantic Niño mode) with SST anomalies in the eastern equatorial Atlantic cold tongue region that peaks in boreal summer; and a second zonal mode of variability with eastern equatorial SST anomalies peaking in boreal winter. Here we investigate the extent to which there is any seasonality in the relationship between equatorial warm water recharge and the development of eastern equatorial Atlantic SST anomalies. Seasonally stratified cross-correlation analysis between eastern equatorial Atlantic SST anomalies and equatorial heat content anomalies (evaluated using warm water volume and sea surface height) indicate that while equatorial heat content changes do occasionally play a role in the development of boreal summer Atlantic zonal mode events, they contribute more consistently to Atlantic Niño II, boreal winter events. Event and composite analysis of ocean adjustment with a shallow water model suggest that the warm water volume anomalies originate mainly from the off-equatorial northwestern Atlantic, in agreement with previous studies linking them to anomalous wind stress curl associated with the Atlantic meridional mode.

     
    more » « less
  5. Abstract

    Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

     
    more » « less