Aging infrastructure and growing interests in river restoration have led to a substantial rise in dam removals in the United States. However, the decision to remove a dam involves many complex trade-offs. The benefits of dam removal for hazard reduction and ecological restoration are potentially offset by the loss of hydroelectricity production, water supply, and other important services. We use a multiobjective approach to examine a wide array of trade-offs and synergies involved with strategic dam removal at three spatial scales in New England. We find that increasing the scale of decision-making improves the efficiency of trade-offs among ecosystem services, river safety, and economic costs resulting from dam removal, but this may lead to heterogeneous and less equitable local-scale outcomes. Our model may help facilitate multilateral funding, policy, and stakeholder agreements by analyzing the trade-offs of coordinated dam decisions, including net benefit alternatives to dam removal, at scales that satisfy these agreements.
This content will become publicly available on December 1, 2025
On June 6, 2023, the Kakhovka Dam in Ukraine experienced a catastrophic breach that led to the loss of life and substantial economic values. Prior to the breach, the supporting structures downstream of the spillway had shown signs of being compromised. Here, we use multi-source satellite data, meteorological reanalysis, and dam design criteria to document the dam’s pre-failure condition. We find that anomalous operation of the Kakhovka Dam began in November 2022, following the destruction of a bridge segment, which led to persistent overtopping from late April 2023 up to the breach, contributing to the erosion of the spillway foundation. Moreover, our findings also highlight safety and risk-reduction measures pivotal in avoiding such scenarios. To help prevent future disasters, we advocate for greater transparency in the design parameters of key water structures to enable risk management, and conclude that remote sensing technology can help ensuring water infrastructure safety.
more » « less- Award ID(s):
- 2225078
- PAR ID:
- 10544288
- Publisher / Repository:
- nature
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A changing climate, with intensifying precipitation may contribute to increasing failures of dams by overtopping. We present the first analysis of rainfall sequences and events associated with recent hydrologic failures of 552 dams in the United States. We find that the maximum 1-day rainfall associated with failure was often not extreme compared to dam spillway design criteria, even when accounting for rainfall statistics changing with time at each site. However, the combination of the total rainfall 5 to 30 days prior and the maximum 1-day rainfall associated with dam failure is rare. Persistent atmospheric circulation patterns that lead to recurrent rainfall events, rather than just more moisture in the atmosphere is a possible reason. The probability of these compound precipitation risks has increased across much of the country. With over 90,000 aging dams still in service, the increasing likelihood of intense rainfall sequences raises concerns about future dam failures.
-
Abstract Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates and
δ 15N values were also determined. Denitrification rates and soilδ 15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management. -
Abstract Uncertainty arising from climate change poses a central challenge to the long‐term performance of many engineered water systems. Water supply infrastructure projects can leverage different types of flexibility, in planning, design, or operations, to adapt infrastructure systems in response to climate change over time. Both flexible planning and design enable future capacity expansion if‐and‐when needed, with flexible design proactively incorporating physical design changes that enable retrofits. All three forms of flexibility have not previously been analyzed together to explicitly assess their relative value in mitigating cost and water supply reliability risk. In this paper, we propose a new framework to evaluate combinations of flexible planning, design, and operations. We develop a nested stochastic dynamic optimization approach that jointly optimizes dam development and operating policies under dynamic climate uncertainty. We demonstrate this approach on a reservoir project near Mombasa, Kenya. Our results find that flexible operations have the greatest potential to reduce costs. Flexible design and flexible planning can amplify the value of flexible operations under higher discounting scenarios and when initial infrastructure capacities are undersized. This approach provides insight on the climate change and techno‐economic conditions under which flexible planning, design, and operations can be best leveraged individually or in combination to reduce climate change uncertainty risks in water supply infrastructure projects.
-
Abstract We conduct a stated‐preference choice experiment to reveal motorists' driving‐related behavioral responses to different types of signs indicating that the road is flooded and travel costs associated with avoidance of the flooded road. We use three flood‐indicating visualization treatments and control group to identify the effects of particular road signs and identify associations between drivers' behavior and their demographic characteristics and the cost (time) of taking an alternate route. Using responses from 714 adult participants from the coastal area of the Mid‐Atlantic of the United States, we estimate willingness to drive additional minutes to avoid flooded roads using a random utility framework. Our results suggest that individuals are more likely to avoid flooded roads when shown flood‐indicating road signs that do not indicate the exact depth of the water and signs that indicate that the water is relatively deep (more than 12 in.). We further find that individuals tend to persist in their initial choices. They often make risky choices when high risk‐indicating information is presented at the beginning of the decision‐making process. The results of this study can help inform the sign design choices of transportation managers to help ensure driver safety in flood conditions.