A Modular Simulation-based MBSE Approach Applied to a Cloud-based System.
                        
                    - Award ID(s):
- 1931363
- PAR ID:
- 10544322
- Publisher / Repository:
- Proceedings of the 34th Annual INCOSE International Symposium
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Hemoglobin is a biomarker of interest for the diagnosis and prognosis of various diseases such as anemia, sickle cell disease, and thalassemia. In this paper, we present a disposable device that has the potential of being used in a setting for accurately quantifying hemoglobin levels in whole blood based on colorimetric analysis using a smartphone camera. Our biosensor employs a disposable microfluidic chip which is made using medical-grade tapes and filter paper on a glass slide in conjunction with a custom-made PolyDimethylSiloaxane (PDMS) micropump for enhancing capillary flow. Once the blood flows through the device, the glass slide is imaged using a smartphone equipped with a custom 3D printed attachment. The attachment has a Light Emitting Diode (LED) that functions as an independent light source to reduce the noise caused by background illumination and external light sources. We then use the RGB values obtained from the image to quantify the hemoglobin levels. We demonstrated the capability of our device for quantifying hemoglobin in Bovine Hemoglobin Powder, Frozen Beef Blood, and human blood. We present a logarithmic model that specifies the relationship between the Red channel of the RGB values and Hemoglobin concentration.more » « less
- 
            Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations.more » « less
- 
            We consider the community search problem defined upon a large graph G: given a query vertex q in G, to find as output all the densely connected subgraphs of G, each of which contains the query v. As an online, query-dependent variant of the well-known community detection problem, community search enables personalized community discovery that has found widely varying applications in real-world, large-scale graphs. In this paper, we study the community search problem in the truss-based model aimed at discovering all dense and cohesive k-truss communities to which the query vertex q belongs. We introduce a novel equivalence relation, k-truss equivalence, to model the intrinsic density and cohesiveness of edges in k-truss communities. Consequently, all the edges of G can be partitioned to a series of k-truss equivalence classes that constitute a space-efficient, truss-preserving index structure, EquiTruss. Community search can be henceforth addressed directly upon EquiTruss without repeated, time-demanding accesses to the original graph, G, which proves to be theoretically optimal. In addition, EquiTruss can be efficiently updated in a dynamic fashion when G evolves with edge insertion and deletion. Experimental studies in real-world, large-scale graphs validate the efficiency and effectiveness of EquiTruss, which has achieved at least an order of magnitude speedup in community search over the state-of-the-art method, TCP-Index.more » « less
- 
            This paper introduces and solves a visibility-based escort planning problem. This novel problem, which is closely related to the well-researched family of visibility-based pursuit-evasion problems in robotics, entails an escort agent tasked with escorting a vulnerable agent, called the VIP, in a 2-dimensional environment. The escort protects the VIP from adversaries that pose line-of-sight threats. We describe a correct and complete planning algorithm whose inputs are a simply-connected polygonal map of the environment, starting locations for the escort and the VIP, along with a goal location to which the VIP agent should be safely moved. The algorithm computes trajectories for the escort and VIP which allow the VIP to reach its goal without coming into the line-of-sight of the adversary at any time. During the execution of these trajectories, the adversary is allowed to move along any continuous path that does not enter into the line-of-sight of the escort. The algorithm proceeds by dividing the environment into a collection of conservative regions and planning the escort's movements as a sequence of these regions via breadth-first search over an information graph. The trajectory of the VIP can then be constructed by tracing the 'safe zones' swept out by the escort's trajectory. We describe an implementation of this algorithm and present computed examples of escort agent strategies in diverse environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    