Magic-angle twisted bilayer graphene (MATBG) exhibits a panoply of many-body phenomena that are intimately tied to the appearance of narrow and well-isolated electronic bands. The microscopic ingredients that are responsible for the complex experimental phenomenology include electron–electron (phonon) interactions and nontrivial Bloch wavefunctions associated with the narrow bands. Inspired by recent experiments, we focus on two independent quantities that are considerably modified by Coulomb interaction-driven band renormalization, namely the density of states and the minimal spatial extent associated with the Wannier functions. First, we show that a filling-dependent enhancement of the density of states, caused by band flattening, in combination with phonon-mediated attraction due to electron-phonon umklapp processes, increases the tendency towards superconducting pairing in a range of angles around magic-angle. Second, we demonstrate that the minimal spatial extent associated with the Wannier functions, which contributes towards increasing the superconducting phase stiffness, also develops a nontrivial enhancement due to the interaction-induced renormalization of the Bloch wavefunctions. While our modeling of superconductivity (SC) assumes a weak electron-phonon coupling and does not consider many of the likely relevant correlation effects, it explains simply the experimentally observed robustness of SC in the wide range of angles that occurs in the relevant range of fillings.
- Award ID(s):
- 2110041
- PAR ID:
- 10544594
- Publisher / Repository:
- aps.org
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 108
- Issue:
- 16
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We argue that the unusually strong electron–electron interactions in the narrow bands in moiré superlattices originate from compact Wannier orbitals. Enhanced overlaps of electronic wavefunctions, enabled by such orbitals, result in a strong el–el superlattice umklapp scattering. We identify the umklapp scattering processes as a source of the strong temperature-dependent resistivity observed in these systems. In a simple model, the umklapp scattering predicts a
T -dependent resistivity that grows asT 2with a numerical prefactor that grows as the Wannier orbital radius decreases. We quantify the enhancement in el–el scattering by the Kadowaki–Woods (KW) ratio, a quantity that is sensitive to umklapp scattering but, helpfully, insensitive to the effects due to the high density of electronic states. Our analysis predicts anomalously large KW ratio values that clearly indicate the importance of the umklapp el–el processes and their impact on theT -dependent resistivity. -
Vortex beams (VBs) carrying orbital angular moment (OAM) modes have been proven to be promising resources for increasing communication capacity. Although considerable attention has been paid on metasurface-based VB generators due to the unprecedented advantages of metasurface, most applications are usually limited at a single band with a fixed OAM mode. In this work, an emerging dual-band reflection-type coding metasurface is proposed to mitigate these issues by newly engineered meta-atoms, which could achieve independent 2-bit phase modulations at two frequency bands. The proposed coding metasurface could efficiently realize and fully control dual-band VBs carrying frequency selective OAM modes under the linearly polarized incidence. As the first illustrative example, a dual-band VB generator with normal beam direction is fabricated and characterized at two widely used communication bands (Ku and Ka bands). Moreover, by encoding proper coding sequences, versatile beams carrying frequency selective OAM modes can be achieved. Therefore, by adding a gradient phase sequence to the first VB generator, the second one is designed to steer the generated beams to a preset direction, which could enable diverse scenarios. The measurement results of both VB generators agree very well with the numerical ones, validating the full control capability of the proposed approach.
-
We introduce a maximally localized Wannier function representation of Bloch excitons, two-particle correlated electron-hole excitations, in crystalline solids, where the excitons are maximally localized with respect to an average electron-hole coordinate in real space. As a proof-of-concept, we illustrate this representation in the case of low-energy spin-singlet and -triplet excitons in cubic lithium fluoride, computed using the ab initio Bethe-Salpeter equation approach. We visualize the resulting maximally localized exciton Wannier functions (MLXWFs) in real space, detail the convergence of the exciton Wannier spreads, and demonstrate how Wannier-Fourier interpolation can be leveraged to obtain exciton energies and states at arbitrary exciton crystal momenta in the Brillouin zone. We further introduce an approach to treat the long-range dipolar coupling between singlet MLXWFs and discuss it in depth. The MLXWF representation sheds light on the fundamental nature of excitons and paves the way toward Wannier-based post-processing of excitonic properties, enabling the construction of ab initio exciton tight-binding models, efficient interpolation of the exciton-phonon vertex, the computation of Berry curvature associated with exciton bands, and beyond.more » « less
-
Lattices with dispersionless, or flat, energy bands have attracted substantial interest in part due to the strong dependence of particle dynamics on interactions. Using superconducting circuits, we experimentally study the dynamics of one and two particles in a single plaquette of a lattice whose band structure consists entirely of flat bands. We first observe strictly localized dynamics of a single particle, the hallmark of all-bands-flat physics. Upon initializing two particles on the same site, we see an interaction-enabled delocalized walk across the plaquette. We further find localization in Fock space for two particles initialized on opposite sides of the plaquette. These results mark the first experimental observation of a quantum walk that becomes delocalized due to interactions and establishes a key building block in superconducting circuits for studying flat-band dynamics with strong interactions.