We propose a neuro-symbolic approach for realistic few-shot relation classification via rules. Instead of building neural models to predict relations, we design them to output straight- forward rules that can be used to extract relations. The rules are generated using custom T5-style Encoder-Decoder Language Models. Crucially, our rules are fully interpretable and pliable (i.e., humans can easily modify them to boost performance). Through a combination of rules generated by these models along with a very effective, novel baseline, we demonstrate a few-shot relation-classification performance that is comparable to or stronger than the state of the art on the Few-Shot TACRED and NYT29 benchmarks while increasing interpretability and maintaining pliability.
more »
« less
Best of Both Worlds: A Pliable and Generalizable Neuro-Symbolic Approach for Relation Classification
This paper introduces a novel neuro-symbolic architecture for relation classification (RC) that combines rule-based methods with contemporary deep learning techniques. This approach capitalizes on the strengths of both paradigms: the adaptability of rule-based systems and the generalization power of neural networks. Our architecture consists of two components: a declarative rule-based model for transparent classification and a neural component to enhance rule generalizability through semantic text matching. Notably, our semantic matcher is trained in an unsupervised domain-agnostic way, solely with synthetic data. Further, these components are loosely coupled, allowing for rule modifications without retraining the semantic matcher. In our evaluation, we focused on two few-shot relation classification datasets: Few-Shot TACRED and a Few-Shot version of NYT29. We show that our proposed method outperforms previous state-of-the-art models in three out of four settings, despite not seeing any human-annotated training data. Further, we show that our approach remains modular and pliable, i.e., the corresponding rules can be locally modified to improve the overall model. Human interventions to the rules for the TACRED relation org:parents boost the performance on that relation by as much as 26% relative improvement, without negatively impacting the other relations, and without retraining the semantic matching component.
more »
« less
- Award ID(s):
- 2006583
- PAR ID:
- 10550329
- Publisher / Repository:
- Association for Computational Linguistics
- Date Published:
- Page Range / eLocation ID:
- 2576 to 2594
- Format(s):
- Medium: X
- Location:
- Mexico City, Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a method that self trains (or bootstraps) neural relation and explanation classifiers. Our work expands the supervised approach of (Tang and Surdeanu, 2022), which jointly trains a relation classifier with an explanation classifier that identifies context words important for the relation at hand, to semi- supervised scenarios. In particular, our approach iteratively converts the explainable mod- els’ outputs to rules and applies them to unlabeled text to produce new annotations. Our evaluation on the TACRED dataset shows that our method outperforms the rule-based model we started from by 15 F1 points, outperforms traditional self-training that relies just on the relation classifier by 5 F1 points, and performs comparatively with the prompt-based approach of Sainz et al. (2021) (without requiring an additional natural language inference component).more » « less
-
While deep learning approaches to information extraction have had many successes, they can be difficult to augment or maintain as needs shift. Rule-based methods, on the other hand, can be more easily modified. However, crafting rules requires expertise in linguistics and the domain of interest, making it infeasible for most users. Here we attempt to combine the advantages of these two directions while mitigating their drawbacks. We adapt recent advances from the adjacent field of program synthesis to information extraction, synthesizing rules from provided examples. We use a transformer-based architecture to guide an enumerative search, and show that this reduces the number of steps that need to be explored before a rule is found. Further, we show that our synthesized rules achieve state-of-the-art performance on the 1-shot scenario of a task that focuses on few-shot learning for relation classification, and competitive performance in the 5-shot scenario.more » « less
-
While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris’ distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score.more » « less
-
We propose a system that assists a user in constructing transparent information extraction models, consisting of patterns (or rules) written in a declarative language, through program synthesis. Users of our system can specify their requirements through the use of examples, which are collected with a search interface. The rule-synthesis system proposes rule candidates and the results of applying them on a textual corpus; the user has the option to accept the candidate, request another option, or adjust the examples provided to the system. Through an interactive evaluation, we show that our approach generates high-precision rules even in a 1-shot setting. On a second evaluation on a widely-used relation extraction dataset (TACRED), our method generates rules that outperform considerably manually written patterns. Our code, demo, and documentation is available at https://clulab.github.io/odinsynth/.more » « less
An official website of the United States government

