skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancements of electric field and afterglow of non-equilibrium plasma by Pb(ZrxTi1−x)O3 ferroelectric electrode
Abstract Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing.  more » « less
Award ID(s):
2029425
PAR ID:
10545054
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the self-pulsing of dielectric barrier discharges (DBDs) at low driving frequencies. In particular, (a) the dependence of current on the product pd of gas pressure p and the gas gap length d, (b) the effects of lossy dielectrics (in resistive discharges) and large dielectric permittivity (in ferroelectrics) on current dynamics, (c) the transition from Townsend to a dynamic capacitively coupled plasma (CCP) discharge with changing pd values, and (d) the transition from Townsend to a high-frequency CCP regime with increasing the driving frequency. A one-dimensional fluid model of argon plasma is coupled to an equivalent RC circuit for lossy dielectrics. Our results show multiple current pulses per AC period in Townsend and CCP discharge modes which are explained by uncoupled electron–ion transport in the absence of quasineutrality and surface charge deposition at dielectric interfaces. The number of current pulses decreases with an increasing applied frequency when the Townsend discharge transforms into the CCP discharge. The resistive barrier discharge with lossy dielectrics exhibits Townsend and glow modes for the same pd value (7.6 Torr cm) for higher and lower resistances, respectively. Finally, we show that ferroelectric materials can amplify discharge current in DBDs. Similarities between current pulsing in DBD, Trichel pulses in corona discharges, and subnormal oscillations in DC discharges are discussed. 
    more » « less
  2. null (Ed.)
    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields ( e.g. , temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO 3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NO x direct decomposition and SO 2 oxidation into SO 3 . The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. 
    more » « less
  3. null (Ed.)
    Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films. Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength. We demonstrate energy storage densities as high as ~133 joules per cubic centimeter with efficiencies exceeding 75%. Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength. 
    more » « less
  4. III-nitrides and related alloys are widely used for optoelectronics and as acoustic resonators. Ferroelectric wurtzite nitrides are of particular interest because of their potential for direct integration with Si and wide bandgap semiconductors and unique polarization switching characteristics; such interest has taken off since the first report of ferroelectric Al1−xScxN alloys. However, the coercive fields needed to switch polarization are on the order of MV/cm, which are 1–2 orders of magnitude larger than oxide perovskite ferroelectrics. Atomic-scale point defects are known to impact the dielectric properties, including breakdown fields and leakage currents, as well as ferroelectric switching. However, very little is known about the native defects and impurities in Al1−xScxN and their effect on the dielectric and ferroelectric properties. In this study, we use first-principles calculations to determine the formation energetics of native defects and unintentional oxygen incorporation and their effects on the polarization switching barriers in Al1−xScxN alloys. We find that nitrogen vacancies are the dominant native defects, and unintentional oxygen incorporation on the nitrogen site is present in high concentrations. They introduce multiple mid-gap states that can lead to premature dielectric breakdown and increased temperature-activated leakage currents in ferroelectrics. We also find that nitrogen vacancy and substitutional oxygen reduce the switching barrier in Al1−xScxN at low Sc compositions. The effect is minimal or even negative (increases barrier) at higher Sc compositions. Unintentional defects are generally considered to adversely affect ferroelectric properties, but our findings reveal that controlled introduction of point defects by tuning synthesis conditions can instead benefit polarization switching in ferroelectric Al1−xScxN at certain compositions. 
    more » « less
  5. Abstract Relaxor ferroelectrics (RFEs) are being actively investigated for energy‐storage applications due to their large electric‐field‐induced polarization with slim hysteresis and fast energy charging–discharging capability. Here, a novel nanograin engineering approach based upon high kinetic energy deposition is reported, for mechanically inducing the RFE behavior in a normal ferroelectric Pb(Zr0.52Ti0.48)O3(PZT), which results in simultaneous enhancement in the dielectric breakdown strength (EDBS) and polarization. Mechanically transformed relaxor thick films with 4 µm thickness exhibit an exceptionalEDBSof 540 MV m−1and reduced hysteresis with large unsaturated polarization (103.6 µC cm−2), resulting in a record high energy‐storage density of 124.1 J cm−3and a power density of 64.5 MW cm−3. This fundamental advancement is correlated with the generalized nanostructure design that comprises nanocrystalline phases embedded within the amorphous matrix. Microstructure‐tailored ferroelectric behavior overcomes the limitations imposed by traditional compositional design methods and provides a feasible pathway for realization of high‐performance energy‐storage materials. 
    more » « less