skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coding for the Unsourced A-Channel with Erasures: The Linked Loop Code
The A -channel is a noiseless multiple access channel in which users simultaneously transmit Q-ary symbols and the receiver observes the set of transmitted symbols, but not their multiplicities. An A-channel is said to be unsourced if, additionally, users' transmissions are encoded across time using a common codebook and decoding of the transmitted messages is done without regard to the identities of the active users. An interesting variant of the unsourced A -channel is the unsourced A-channel with erasures (UACE), in which transmitted symbols are erased with a given independent and identically distributed probability. In this paper, we focus on designing a code that enables a list of transmitted codewords to be recovered despite the erasures of some of the transmitted symbols. To this end, we propose the linked-loop code (LLC), which uses parity bits to link each symbol to the previous M symbols in a tail-biting manner, i.e., the first symbols of the transmission are linked to the last ones. The decoding process occurs in two phases: the first phase decodes the codewords that do not suffer from any erasures, and the second phase attempts to recover the erased symbols using the available parities. We compare the performance of the LLC over the UACE with other codes in the literature and argue for the effectiveness of the construction. Our motivation for studying the UACE comes from its relevance in machine-type communication and coded compressed sensing.  more » « less
Award ID(s):
2131106 2148354
PAR ID:
10545216
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-9-4645-9360-0
Page Range / eLocation ID:
1534 to 1538
Subject(s) / Keyword(s):
Forward Error Correction Signal Processing Encoding Decoding
Format(s):
Medium: X
Location:
Helsinki, Finland
Sponsoring Org:
National Science Foundation
More Like this
  1. In [1], the linked loop code (LLC) is presented as a promising code for the unsourced A-channel with erasures (UACE). The UACE is an unsourced multiple access channel in which active users’ transmitted symbols are erased with a given probability and the channel output is obtained as the union of the non-erased symbols. In this paper, we extend the UACE channel model to the unsourced B-channel with erasures (UBCE). The UBCE differs from the UACE in that the channel output is the multiset union – or bag union– of the non-erased input symbols. In other words, the UBCE preserves the symbol multiplicity of the channel output while the UACE does not. Both the UACE and UBCE find applications in modeling aspects of unsourced random access. The LLC from [1] is enhanced and shown to outperform the tree code over the UBCE. Findings are supported by numerical simulations. 
    more » « less
  2. Liva, Gianluigi (Ed.)
    Unsourced random access emerged as a novel wireless paradigm enabling massive device connectivity on the uplink. We consider quasi-static Rayleigh fading wherein the access point has multiple receive antennas and every mobile device a single transmit antenna. The objective is to construct a coding scheme that minimizes the energy-per-bit subject to a maximum probability of error given a fixed message length and a prescribed number of channel uses. Every message is partitioned into two parts: the first determines pilot values and spreading sequences; the remaining bits are encoded using a polar code. The transmitted signal contains two distinct sections. The first features pilots and the second is composed of spread modulated symbols. The receiver has three modules: an energy detector, tasked with recovering the set of active pilot sequences; a bank of Minimum Mean Square Error (MMSE) estimators acting on measurements at the receiver; and a polar list-decoder, which seeks to retrieve the coded information bits. A successive cancellation step is applied to subtract recovered codewords, before the residual signal is fed back to the decoder. Empirical evidence suggests that an appropriate combination of these ideas can outperform state-of-the-art coding techniques when the number of active users exceeds one hundred. 
    more » « less
  3. A status updating system is considered in which a variable length code is used to transmit messages to a receiver over a noisy channel. The goal is to optimize the codewords lengths such that successfully-decoded messages are timely. That is, such that the age-of-information (AoI) at the receiver is minimized. A hybrid ARQ (HARQ) scheme is employed, in which variable-length incremental redundancy (IR) bits are added to the originally-transmitted codeword until decoding is successful. With each decoding attempt, a non-zero processing delay is incurred. The optimal codewords lengths are analytically derived utilizing a sequential differential optimization (SDO) framework. The framework is general in that it only requires knowledge of an analytical expression of the positive feedback (ACK) probability as a function of the codeword length. 
    more » « less
  4. Unsourced random access (URA) has emerged as a pragmatic framework for next-generation distributed sensor networks. Within URA, concatenated coding structures are often employed to ensure that the central base station can accurately recover the set of sent codewords during a given transmission period. Many URA algorithms employ independent inner and outer decoders, which can help reduce computational complexity at the expense of a decay in performance. In this article, an enhanced decoding algorithm is presented for a concatenated coding structure consisting of a wide range of inner codes and an outer tree-based code. It is shown that this algorithmic enhancement has the potential to simultaneously improve error performance and decrease the computational complexity of the decoder. This enhanced decoding algorithm is applied to two existing URA algorithms, and the performance benefits of the algorithm are characterized. Findings are supported by numerical simulations. 
    more » « less
  5. We study communication models for channels with erasures in which the erasure pattern can be controlled by an adversary with partial knowledge of the transmitted codeword. In particular, we design block codes for channels with binary inputs with an adversary who can erase a fraction p of the transmitted bits. We consider causal adversaries, who must choose to erase an input bit using knowledge of that bit and previously transmitted bits, and myopic adversaries, who can choose an erasure pattern based on observing the transmitted codeword through a binary erasure channel with random erasures. For both settings we design efficient (polynomial time) encoding and decoding algorithms that use randomization at the encoder only. Our constructions achieve capacity for the causal and “sufficiently myopic” models. For the “insufficiently myopic” adversary, the capacity is unknown, but existing converses show the capacity is zero for a range of parameters. For all parameters outside of that range, our construction achieves positive rates. 
    more » « less