skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coding for the Unsourced B-Channel with Erasures: Enhancing the Linked Loop Code
In [1], the linked loop code (LLC) is presented as a promising code for the unsourced A-channel with erasures (UACE). The UACE is an unsourced multiple access channel in which active users’ transmitted symbols are erased with a given probability and the channel output is obtained as the union of the non-erased symbols. In this paper, we extend the UACE channel model to the unsourced B-channel with erasures (UBCE). The UBCE differs from the UACE in that the channel output is the multiset union – or bag union– of the non-erased input symbols. In other words, the UBCE preserves the symbol multiplicity of the channel output while the UACE does not. Both the UACE and UBCE find applications in modeling aspects of unsourced random access. The LLC from [1] is enhanced and shown to outperform the tree code over the UBCE. Findings are supported by numerical simulations.  more » « less
Award ID(s):
2131106 2148354
PAR ID:
10545217
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4485-1
Page Range / eLocation ID:
9221 to 9225
Subject(s) / Keyword(s):
Forward Error Correction Symbols Signal Processing B-Channel Unsourced Random Access (URA) Erasure Channel Coding Theory
Format(s):
Medium: X
Location:
Seoul, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. The A -channel is a noiseless multiple access channel in which users simultaneously transmit Q-ary symbols and the receiver observes the set of transmitted symbols, but not their multiplicities. An A-channel is said to be unsourced if, additionally, users' transmissions are encoded across time using a common codebook and decoding of the transmitted messages is done without regard to the identities of the active users. An interesting variant of the unsourced A -channel is the unsourced A-channel with erasures (UACE), in which transmitted symbols are erased with a given independent and identically distributed probability. In this paper, we focus on designing a code that enables a list of transmitted codewords to be recovered despite the erasures of some of the transmitted symbols. To this end, we propose the linked-loop code (LLC), which uses parity bits to link each symbol to the previous M symbols in a tail-biting manner, i.e., the first symbols of the transmission are linked to the last ones. The decoding process occurs in two phases: the first phase decodes the codewords that do not suffer from any erasures, and the second phase attempts to recover the erased symbols using the available parities. We compare the performance of the LLC over the UACE with other codes in the literature and argue for the effectiveness of the construction. Our motivation for studying the UACE comes from its relevance in machine-type communication and coded compressed sensing. 
    more » « less
  2. This paper applies probabilistic amplitude shaping (PAS) to a cyclic redundancy check (CRC) aided trellis coded modulation (TCM) to achieve the short-blocklength random coding union (RCU) bound. In the transmitter, the equally likely message bits are first encoded by distribution matcher to generate amplitude symbols with the desired distribution. The binary representations of the distribution matcher outputs are then encoded by a CRC. Finally, the CRC-encoded bits are encoded and modulated by Ungerboeck's TCM scheme, which consists of a k/(k+1) systematic tail-biting convolutional code and a mapping function that maps coded bits to channel signals with capacity-achieving distribution. This paper proves that, for the proposed transmitter, the CRC bits have uniform distribution and that the channel signals have symmetric distribution. In the receiver, the serial list Viterbi decoding (S-LVD) is used to estimate the information bits. Simulation results show that, for the proposed CRC-TCM-PAS system with 87 input bits and 65-67 8-AM coded output symbols, the decoding performance under additive white Gaussian noise channel achieves the RCU bound with properly designed CRC and convolutional codes. 
    more » « less
  3. We extend earlier work on the design of convolutional code-specific CRC codes to Q -ary alphabets, with an eye toward Q -ary orthogonal signaling. Starting with distance-spectrum optimal, zero-terminated, Q -ary convolutional codes, we design Q -ary CRC codes so that the CRC/convolutional concatenation is distance-spectrum optimal. The Q -ary code symbols are mapped to a Q -ary orthogonal signal set and sent over an AWGN channel with noncoherent reception. We focus on Q=4 , rate-1/2 convolutional codes in our designs. The random coding union bound and normal approximation are used in earlier works as benchmarks for performance for distance-spectrum-optimal convolutional codes. We derive a saddlepoint approximation of the random coding union bound for the coded noncoherent signaling channel, as well as a normal approximation for this channel, and compare the performance of our codes to these limits. Our best design is within 0.6 dB of the RCU bound at a frame error rate of 10 −4 . 
    more » « less
  4. Liva, Gianluigi (Ed.)
    Unsourced random access emerged as a novel wireless paradigm enabling massive device connectivity on the uplink. We consider quasi-static Rayleigh fading wherein the access point has multiple receive antennas and every mobile device a single transmit antenna. The objective is to construct a coding scheme that minimizes the energy-per-bit subject to a maximum probability of error given a fixed message length and a prescribed number of channel uses. Every message is partitioned into two parts: the first determines pilot values and spreading sequences; the remaining bits are encoded using a polar code. The transmitted signal contains two distinct sections. The first features pilots and the second is composed of spread modulated symbols. The receiver has three modules: an energy detector, tasked with recovering the set of active pilot sequences; a bank of Minimum Mean Square Error (MMSE) estimators acting on measurements at the receiver; and a polar list-decoder, which seeks to retrieve the coded information bits. A successive cancellation step is applied to subtract recovered codewords, before the residual signal is fed back to the decoder. Empirical evidence suggests that an appropriate combination of these ideas can outperform state-of-the-art coding techniques when the number of active users exceeds one hundred. 
    more » « less
  5. We design a nonadaptive algorithm that, given a Boolean function f: {0, 1}^n → {0, 1} which is α-far from monotone, makes poly(n, 1/α) queries and returns an estimate that, with high probability, is an O-tilde(\sqrt{n})-approximation to the distance of f to monotonicity. Furthermore, we show that for any constant k > 0, approximating the distance to monotonicity up to n^(1/2−k)-factor requires 2^{n^k} nonadaptive queries, thereby ruling out a poly(n, 1/α)-query nonadaptive algorithm for such approximations. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. Approximating the distance to a property is closely related to tolerantly testing that property. Our lower bound stands in contrast to standard (non-tolerant) testing of monotonicity that can be done nonadaptively with O-tilde(n/ε^2) queries. We obtain our lower bound by proving an analogous bound for erasure-resilient testers. An α-erasure-resilient tester for a desired property gets oracle access to a function that has at most an α fraction of values erased. The tester has to accept (with probability at least 2/3) if the erasures can be filled in to ensure that the resulting function has the property and to reject (with probability at least 2/3) if every completion of erasures results in a function that is ε-far from having the property. Our method yields the same lower bounds for unateness and being a k-junta. These lower bounds improve exponentially on the existing lower bounds for these properties. 
    more » « less