In multi-cellular organisms, cells and tissues coordinate biochemical signal propagation across length scales spanning micrometres to metres. Designing synthetic materials with similar capacities for coordinated signal propagation could allow these systems to adaptively regulate themselves across space and over time. Here, we combine ideas from cell signalling and electronic circuitry to propose a biochemical waveguide that transmits information in the form of a concentration of a DNA species on a directed path. The waveguide could be seamlessly integrated into a soft material because there is virtually no difference between the chemical or physical properties of the waveguide and the material it is embedded within. We propose the design of DNA strand displacement reactions to construct the system and, using reaction–diffusion models, identify kinetic and diffusive parameters that enable super-diffusive transport of DNA species via autocatalysis. Finally, to support experimental waveguide implementation, we propose a sink reaction and spatially inhomogeneous DNA concentrations that could mitigate the spurious amplification of an autocatalyst within the waveguide, allowing for controlled waveguide triggering. Chemical waveguides could facilitate the design of synthetic biomaterials with distributed sensing machinery integrated throughout their structure and enable coordinated self-regulating programmes triggered by changing environmental conditions.
more » « less- Award ID(s):
- 2107246
- PAR ID:
- 10545234
- Publisher / Repository:
- Royal Society Open Science
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 9
- Issue:
- 8
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
DNA computing has emerged as a promising alternative to achieve programmable behaviors in chemistry by repurposing the nucleic acid molecules into chemical hardware upon which synthetic chemical programs can be executed. These chemical programs are capable of simulating diverse behaviors, including boolean logic computation, oscillations, and nanorobotics. Chemical environments such as the cell are marked by uncertainty and are prone to random fluctuations. For this reason, potential DNA-based molecular devices that aim to be deployed into such environments should be capable of adapting to the stochasticity inherent in them. In keeping with this goal, a new subfield has emerged within DNA computing, focusing on developing approaches that embed learning and inference into chemical reaction systems. If realized in biochemical contexts, such molecular machines can engender novel applications in fields such as biotechnology, synthetic biology, and medicine. Therefore, it would be beneficial to review how different ideas were conceived, how the progress has been so far, and what the emerging ideas are in this nascent field of ‘molecular-scale learning’.more » « less
-
Abstract A specific and reversible method is reported to engineer cell‐membrane function by embedding DNA‐origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher‐order DNA assemblies at the cell surface and programed cell–cell adhesion between homotypic and heterotypic cells via sequence‐specific DNA hybridization. It is anticipated that integration of DNA‐origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.
-
We demonstrate an on-chip spectrometer readily integrable with CMOS electronics. The structure is comprised of a SiO2/Si3N4/SiO2waveguide atop a silicon substrate. A transversely chirped grating is fabricated, in a single-step optical lithography process, on a portion of the waveguide to provide angle and wavelength dependent coupling to the guided mode. The spectral and angular information is encoded in the spatial dependence of the grating period. A uniform pitch grating area, separated from the collection area by an unpatterned propagation region, provides the out-coupling to a CMOS detector array. A resolution of 0.3 nm at 633 nm with a spectral coverage tunable across the visible and NIR (to ∼ 1 µm limited by the Si photodetector) by changing the angle of incidence, is demonstrated without the need for any signal processing deconvolution. This on-chip spectrometer concept will cost effectively enable a broad range of applications that are beyond the reach of current integrated spectroscopic technologies.
-
Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.more » « less
-
null (Ed.)Abstract Electronic biosensors for DNA detection typically utilize immobilized oligonucleotide probes on a signal transducer, which outputs an electronic signal when target molecules bind to probes. However, limitation in probe selectivity and variable levels of non-target material in complex biological samples can lead to nonspecific binding and reduced sensitivity. Here we introduce the integration of 2.8 μm paramagnetic beads with DNA fragments. We apply a custom-made microfluidic chip to detect DNA molecules bound to beads by measuring Impedance Peak Response (IPR) at multiple frequencies. Technical and analytical performance was evaluated using beads containing purified Polymerase Chain Reaction (PCR) products of different lengths (157, 300, 613 bp) with DNA concentration ranging from 0.039 amol to 7.8 fmol. Multi-frequency IPR correlated positively with DNA amounts and was used to calculate a DNA quantification score. The minimum DNA amount of a 300 bp fragment coupled on beads that could be robustly detected was 0.0039 fmol (1.54 fg or 4750 copies/bead). Additionally, our approach allowed distinguishing beads with similar molar concentration DNA fragments of different lengths. Using this impedance sensor, purified PCR products could be analyzed within ten minutes to determine DNA fragment length and quantity based on comparison to a known DNA standard.more » « less