skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxygen Activation in Aromatic Ring Cleaving Salicylate Dioxygenase: Detection of Reaction Intermediates with a Nitro‐substituted Substrate Analog
Abstract Cupin dioxygenases such as salicylate 1,2‐dioxygense (SDO) perform aromatic C−C bond scission via a 3‐His motif tethered iron cofactor. Here, transient kinetics measurements are used to monitor the catalytic cycle of SDO by using a nitro‐substituted substrate analog, 3‐nitrogentisate. Compared to the natural substrate, the nitro group reduces the enzymatickcatby 500‐fold, thereby facilitating the detection and kinetic characterization of reaction intermediates. Sums and products of reciprocal relaxation times derived from kinetic measurements were found to be linearly dependent on O2concentration, suggesting reversible formation of two distinct intermediates. Dioxygen binding to the metal cofactor takes place with a forward rate of 5.9×103 M−1 s−1: two orders of magnitude slower than other comparable ring‐cleaving dioxygenses. Optical chromophore of the first intermediate is distinct from thein situgenerated SDO Fe(III)−O2complex but closer to the enzyme‐substrate precursor.  more » « less
Award ID(s):
2107692
PAR ID:
10545298
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH GmbH
Date Published:
Journal Name:
ChemBioChem
Volume:
25
Issue:
8
ISSN:
1439-4227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (Ec) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofEcunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications. 
    more » « less
  2. 1,3-Diiodo-5-nitrobenzene, C6H3I2NO2, and 1,3-dibromo-5-nitrobenzene, C6H3Br2NO2, crystallize in the centrosymmetric space groupP21/m, and are isostructural with 1,3-dichloro-5-nitrobenzene, C6H3Cl2NO2, that has been redetermined at 100 K for consistency. While the three-dimensional packing in all three structures is similar, the size of the halogen atom affects the nonbonded close contacts observed between molecules. Thus, the structure of 1,3-diiodo-5-nitrobenzene features a close Type 1 I...I contact, the structure of 1,3-dibromo-5-nitrobenzene features a self-complementary nitro-O...Br close contact, while the structure of 1,3-dichloro-5-nitrobenzene also has a self-complementary nitro-O...Cl interaction, as well as a bifurcated C—H...O(nitro) close contact. Notably, the major energetically attractive intermolecular interaction between adjacent molecules in each of the three structures corresponds to a π-stacked interaction. The self-complementary halogen...O(nitro) and C—H...O(nitro) interactions correspond to significant cohesive attraction between molecules in each structure, while the Type 1 halogen–halogen contact is weakly cohesive. 
    more » « less
  3. Abstract The trichromium cluster (tbsL)Cr3(thf) ([tbsL]6−=[1,3,5‐C6H9(NC6H4‐o‐NSitBuMe2)3]6−) exhibits steric‐ and solvation‐controlled reactivity with organic azides to form three distinct products: reaction of (tbsL)Cr3(thf) with benzyl azide forms a symmetrized bridging imido complex (tbsL)Cr33‐NBn); reaction with mesityl azide in benzene affords a terminally bound imido complex (tbsL)Cr31‐NMes); whereas the reaction with mesityl azide in THF leads to terminal N‐atom excision from the azide to yield the nitride complex (tbsL)Cr33‐N). The reactivity of this complex demonstrates the ability of the cluster‐templating ligand to produce a well‐defined polynuclear transition metal cluster that can access distinct single‐site and cooperative reactivity controlled by either substrate steric demands or reaction media. 
    more » « less
  4. Abstract The pathways for the reactions of aluminum oxide cluster ions with ethane have been measured. For selected ions (Al2O+, Al3O2+, Al3O4+, Al4O7+) the structure of the collisionally‐stabilized reaction intermediates were explored by measuring the photodissociation vibrational spectra from 2600 cm−1–3100 cm−1. Density functional theory was used to calculate features of the potential energy surfaces for the reactions and the vibrational spectra of intermediates. Generally, more than one isomer contributes to the observed spectrum. The oxygen‐deficient clusters Al2O+and Al3O2+have large C−H activation barriers, so only the entrance channel complexes in which intact C2H6binds to aluminum are observed. This interaction leads to a substantial (~200 cm−1) red shift of the C−H symmetric stretch in ethane, indicating significant weakening of the proximal C−H bonds. In Al3O4+, the complex formed by interactions with three C2H6is investigated and, in addition to entrance channel complexes, the C−H activation intermediate Al3O4H+(C2H5)(C2H6)2is observed. For oxygen‐rich Al4O7+, the C2H6is favored to bind at an aluminum site far from the reactive superoxide group, reducing the reactivity. As expected, oxygen‐rich species and open‐shell cluster ions have smaller barriers for C−H bond activation, except for Al3O4+which is predicted and observed to be reactive. 
    more » « less
  5. Abstract Applications of TEMPO.catalysis for the development of redox‐neutral transformations are rare. Reported here is the first TEMPO.‐catalyzed, redox‐neutral C−H di‐ and trifluoromethoxylation of (hetero)arenes. The reaction exhibits a broad substrate scope, has high functional‐group tolerance, and can be employed for the late‐stage functionalization of complex druglike molecules. Kinetic measurements, isolation and resubjection of catalytic intermediates, UV/Vis studies, and DFT calculations support the proposed oxidative TEMPO./TEMPO+redox catalytic cycle. Mechanistic studies also suggest that Li2CO3plays an important role in preventing catalyst deactivation. These findings will provide new insights into the design and development of novel reactions through redox‐neutral TEMPO.catalysis. 
    more » « less