skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determinants of spring migration departure dates in a New World sparrow: Weather variables reign supreme
Abstract Numerous factors influence the timing of spring migration in birds, yet the relative importance of intrinsic and extrinsic variables on migration initiation remains unclear. To test for interactions among weather, migration distance, parasitism, and physiology in determining spring departure date, we used the Dark‐eyed Junco (Junco hyemalis) as a model migratory species known to harbor diverse and common haemosporidian parasites. Prior to spring migration departure from their wintering grounds in Indiana, USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular immunity (i.e., leukocyte composition and total count), migration distance (i.e., distance to the breeding grounds) using stable isotopes of hydrogen from feathers, and haemosporidian parasite intensity. We then attached nanotags to determine the timing of spring migration departure date using the Motus Wildlife Tracking System. We used additive Cox proportional hazard mixed models to test how risk of spring migratory departure was predicted by the combined intrinsic measures, along with meteorological predictors on the evening of departure (i.e., average wind speed and direction, relative humidity, and temperature). Model comparisons found that the best predictor of spring departure date was average nightly wind direction and a principal component combining relative humidity and temperature. Juncos were more likely to depart for spring migration on nights with largely southwestern winds and on warmer and drier evenings (relative to cooler and more humid evenings). Our results indicate that weather conditions at take‐off are more critical to departure decisions than the measured physiological and parasitism variables.  more » « less
Award ID(s):
1856423
PAR ID:
10545321
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Ecology and Evolution
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
2
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bird migration has fascinated natural historians and scientists for centuries. While the timing of migration is known to vary by species, population, sex, and individual, identifying the cause of this variation can be challenging. Here we investigate factors underlying migratory timing in a long- distance migratory bird, the Common Yellowthroat (Geothlypas trichas), using a population genomic approach. We begin by creating a map of genetic variation across geographic space (a “genoscape”) using lcWGS from across the breeding range. We then utilize genetic assays to assign 249 wintering and 1050 northward migrating birds to genetically distinct breeding populations. Additionally, we estimate the expected spring onset date in each predicted breeding region and calculate the remaining migratory distance for northward migrating birds. Our findings indicate that when population genetic structure is not a factor in the analysis, it appears that birds captured early in the season are migrating to breeding grounds where spring arrives later, which contrasts with prior research. However, when we incorporate population structure into our analysis, our results align with predictions, indicating that birds captured earlier in the season are indeed heading to breeding grounds where spring arrives earlier. Further analysis revealed that the disparity between results obtained with and without population genetic structure can be attributed to the fact that individuals from the western genetic group migrate three times the distance to the west, despite breeding at the same latitude. Our findings suggest that categorizing large numbers of migrating birds into genetically distinct groups can reveal population-specific patterns in migratory timing and shed light on the relative contributions of different selective forces responsible for the observed patterns. 
    more » « less
  2. Abstract Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (Turdus migratorius) during spring migration to Arctic-boreal breeding grounds. We found that over the past quarter-century (1994–2018), robins have migrated ca. 5 d/decade earlier. Based on GPS data collected for 55 robins over three springs (2016–2018), we found the arrival timing and likelihood of stopovers, and timing of arrival to breeding grounds, were strongly influenced by dynamics in snow conditions along migratory paths. These findings suggest plasticity in migratory behavior may be an important mechanism for how long-distance migrants adjust their breeding phenology to keep pace with advancement of spring on breeding grounds. 
    more » « less
  3. Abstract BackgroundDespite exhibiting one of the longest migrations in the world, half of the humpback whale migratory cycle has remained unexamined. Until now, no study has provided a continuous description of humpback whale migratory behavior from a feeding ground to a calving ground. We present new information on satellite-derived offshore migratory movements of 16 Breeding Stock G humpback whales from Antarctic feeding grounds to South American calving grounds. Satellite locations were used to demonstrate migratory corridors, while the impact of departure date on migration speed was assessed using a linear regression. A Bayesian hierarchical state–space animal movement model (HSSM) was utilized to investigate the presence of Area Restricted Search (ARS) en route. Results35,642 Argos locations from 16 tagged whales from 2012 to 2017 were collected. The 16 whales were tracked for a mean of 38.5 days of migration (range 10–151 days). The length of individually derived tracks ranged from 645 to 6381 km. Humpbacks were widely dispersed geographically during the initial and middle stages of their migration, but convened in two convergence regions near the southernmost point of Chile as well as Peru’s Illescas Peninsula. The state–space model showed almost no instances of ARS along the migratory route. The linear regression assessing whether departure date affected migration speed showed suggestive but inconclusive support for a positive trend between the two variables. Results suggestive of stratification by sex and reproductive status were found for departure date and route choice. ConclusionsThis multi-year study sets a baseline against which the effects of climate change on humpback whales can be studied across years and conditions and provides an excellent starting point for the investigation into humpback whale migration. 
    more » « less
  4. SUMMARY With rapid environmental change, shifts in migration timing are vitally important for maintaining population stability and have been widely documented. However, little remains known abouthowmigrants are driving these shifts and what factors may influence the effective utilization of these strategies, limiting our ability to accurately assess species- and population-level vulnerability to climate change. The Hudsonian godwit (Limosa haemastica) is an extreme long-distance migratory shorebird that has (1) previously shifted its population-level migration timing and (2) exhibits sex-specific morphological differences. Therefore, we combined over a decade of light-level geolocator tracking data from a single breeding population with a historical predictive model to assess on-going shifts in migration timing while determining the time-shifting strategies utilized by each sex. Surprisingly, we found that godwit departure and arrival timing rapidly shifted 6 days later from 2010-2023 with no differences in timing between the sexes. Despite this change in migration timing, the population has maintained an average migratory duration of 24 days, suggesting that godwits are driving shifts in arrival timing entirely by shifting their nonbreeding ground departure, something rarely documented in long-distance migrants. Yet, we also found that godwits are not shifting their migration timing in the direction predicted by our model, providing evidence that this response may not be adaptive. These results emphasize the urgent need for a more holistic approach to assessing the relative vulnerability of migratory species and the adaptiveness of changes in migration timing. 
    more » « less
  5. null (Ed.)
    Abstract In migratory birds, among- and within-species heterogeneity in response to climate change may be attributed to differences in migration distance and environmental cues that affect timing of arrival at breeding grounds. We used eBird observations and a within-species comparative approach to examine whether migration distance (with latitude as a proxy) and weather predictors can explain spring arrival dates at the breeding site in a raptor species with a widespread distribution and diverse migration strategies, the American Kestrel Falco sparverius. We found an interactive effect between latitude and spring minimum temperatures on arrival dates, whereby at lower latitudes (short-distance migrants) American Kestrels arrived earlier in warmer springs and later in colder springs, but American Kestrels at higher latitudes (long-distance migrants) showed no association between arrival time and spring temperatures. Increased snow cover delayed arrival at all latitudes. Our results support the hypothesis that short-distance migrants are better able to respond to conditions on the breeding ground than are long-distance migrants, suggesting that long-distance migrants may be more vulnerable to shifts in spring conditions that could lead to phenological mismatch between peak resources and nesting. 
    more » « less