skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fish couple forecasting with feedback control to chase and capture moving prey
Predator–prey interactions are fundamental to ecological and evolutionary dynamics. Yet, predicting the outcome of such interactions—whether predators intercept prey or fail to do so—remains a challenge. An emerging hypothesis holds that interception trajectories of diverse predator species can be described by simple feedback control laws that map sensory inputs to motor outputs. This form of feedback control is widely used in engineered systems but suffers from degraded performance in the presence of processing delays such as those found in biological brains. We tested whether delay-uncompensated feedback control could explain predator pursuit manoeuvres using a novel experimental system to present hunting fish with virtual targets that manoeuvred in ways that push the limits of this type of control. We found that predator behaviour cannot be explained by delay-uncompensated feedback control, but is instead consistent with a pursuit algorithm that combines short-term forecasting of self-motion and prey motion with feedback control. This model predicts both predator interception trajectories and whether predators capture or fail to capture prey on a trial-by-trial basis. Our results demonstrate how animals can combine short-term forecasting with feedback control to generate robust flexible behaviours in the face of significant processing delays.  more » « less
Award ID(s):
2222478 1855956 2321275 2338596 2345913 2102891
PAR ID:
10545415
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
291
Issue:
2031
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A predator's capacity to catch prey depends on its ability to navigate its environment in response to prey movements or escape behaviour. In predator–prey interactions that involve an active chase, pursuit behaviour can be studied as the collection of rules that dictate how a predator should steer to capture prey. It remains unclear how variable this behaviour is within and across species since most studies have detailed the pursuit behaviour of high-speed, open-area foragers. In this study, we analyse the pursuit behaviour in 44 successful captures by Corynorhinus townsendii , Townsend's big-eared bat ( n = 4). This species forages close to vegetation using slow and highly manoeuvrable flight, which contrasts with the locomotor capabilities and feeding ecologies of other taxa studied to date. Our results indicate that this species relies on an initial stealthy approach, which is generally sufficient to capture prey (32 out of 44 trials). In cases where the initial approach is not sufficient to perform a capture attempt (12 out of 44 trials), C. townsendii continues its pursuit by reacting to prey movements in a manner best modelled with a combination of pure pursuit, or following prey directly, and proportional navigation, or moving to an interception point. 
    more » « less
  2. Yue, Bi-Song (Ed.)
    Large mammalian herbivores use a diverse array of strategies to survive predator encounters including flight, grouping, vigilance, warning signals, and fitness indicators. While anti-predator strategies appear to be driven by specific predator traits, no prior studies have rigorously evaluated whether predator hunting characteristics predict reactive anti-predator responses. We experimentally investigated behavioral decisions made by free-ranging impala, wildebeest, and zebra during encounters with model predators with different functional traits. We hypothesized that the choice of response would be driven by a predator’s hunting style (i.e., ambush vs. coursing) while the intensity at which the behavior was performed would correlate with predator traits that contribute to the prey’s relative risk (i.e., each predator’s prey preference, prey-specific capture success, and local predator density). We found that the choice and intensity of anti-predator behaviors were both shaped by hunting style and relative risk factors. All prey species directed longer periods of vigilance towards predators with higher capture success. The decision to flee was the only behavior choice driven by predator characteristics (capture success and hunting style) while intensity of vigilance, frequency of alarm-calling, and flight latency were modulated based on predator hunting strategy and relative risk level. Impala regulated only the intensity of their behaviors, while zebra and wildebeest changed both type and intensity of response based on predator traits. Zebra and impala reacted to multiple components of predation threat, while wildebeest responded solely to capture success. Overall, our findings suggest that certain behaviors potentially facilitate survival under specific contexts and that prey responses may reflect the perceived level of predation risk, suggesting that adaptive functions to reactive anti-predator behaviors may reflect potential trade-offs to their use. The strong influence of prey species identity and social and environmental context suggest that these factors may interact with predator traits to determine the optimal response to immediate predation threat. 
    more » « less
  3. Predation is ubiquitous on coral reefs. Among the most charismatic group of reef predators are the top predatory fishes, including sharks and large-bodied bony fishes. Despite the threat presented by top predators, data describing their realized effects on reef community structure and functioning are challenging to produce. Many innovative studies have capitalized on natural experimental conditions to explore predator effects on reefs. Gradients in predator density have been created by spatial patterning of fisheries management. Evidence of prey release has been observed across some reefs, namely that potential prey increase in density when predator density is reduced. While such studies search for evidence of prey release among broad groups or guilds of potential prey, a subset of studies have sought evidence of release at finer population levels. We find that some groups of fishes are particularly vulnerable to the effects of predators and more able to capitalize demographically when predator density is reduced. For example, territorial damselfish appear to realize reliable population expansion with the reduction in predator density, likely because their aggressive, defensive behavior makes them distinctly vulnerable to predation. Relatedly, individual fishes that suffer from debilitating conditions, such as heavy parasite loads, appear to realize relatively stronger levels of prey release with reduced predator density. Studying the effects of predators on coral reefs remains a timely pursuit, and we argue that efforts to focus on the specifics of vulnerability to predation among potential prey and other context-specific dimensions of mortality hold promise to expand our knowledge. 
    more » « less
  4. Abstract Oceanic ctenophores are widespread predators on pelagic zooplankton. While data on coastal ctenophores often show strong top-down predatory impacts in their ecosystems, differing morphologies, prey capture mechanisms and behaviors of oceanic species preclude the use of coastal data to draw conclusion on oceanic species. We used high-resolution imaging methods both in situ and in the laboratory to quantify interactions of Ocyropsis spp. with natural copepod prey. We confirmed that Ocyropsis spp. uses muscular lobe contraction and a prehensile mouth to capture prey, which is unique amongst ctenophores. This feeding mechanism results in high overall capture success whether encountering single or multiple prey between the lobes (71 and 81% respectively). However, multiple prey require several attempts for successful capture whereas single prey are often captured on the first attempt. Digestion of adult copepods takes 44 min at 25 °C and does not vary with ctenophore size. At high natural densities, we estimate that Ocyropsis spp. consume up to 40% of the daily copepod standing stock. This suggests that, when numerous, Ocyropsis spp. can exert strong top-down control on oceanic copepod populations. At more common densities, these animals consume only a small proportion of the daily copepod standing stock. However, compared to data from pelagic fishes and oceanic medusae, Ocyropsis spp. appears to be the dominant copepod predator in this habitat. 
    more » « less
  5. Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment. 
    more » « less