Abstract The suppression of lithium dendrite is critical to the realization of lithium metal batteries. 3D conductive framework, among different approaches, has shown very promising results in dendrite suppression. A novel cost‐effective and versatile dip‐coating method is presented here to make 3D conductive framework. Various substrates with different geometries are coated successfully with copper, including electrically insulating glass fiber (GF) or rice paper and conducting Ni foam. In particular, the as‐prepared copper coated GF shows promising results to serve as the lithium metal substrate by the electrochemical battery tests. The method significantly broadens the candidate materials database for 3D conductive framework to include all kinds of intrinsically insulating 3D substrates.
more »
« less
Characteristics of Conductive Paints and Tapes for Interactive Murals
This paper analyzes a collection of conductive paints and tapes. We describe and compare their electrical conductivity, durability, appearance, and cost. We investigate different means of connecting these materials to each other and other electronic components-including connection via solder, conductive epoxy, conductive adhesives, and metal mechanical fasteners. We explore different means of insulating and protecting materials and provide the results of a range of durability tests. The results are discussed in the context of the development of interactive murals-large outdoor interactive surfaces that are intended to function for years. We identify two conductive paints, CuPro-Cote and Silver/Copper Super Shield, and two conductive tapes, Copper and Tin that are highly conductive, stable across most of our testing conditions and, we believe, suitable for interactive murals.
more »
« less
- Award ID(s):
- 2006524
- PAR ID:
- 10545492
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Previous studies have demonstrated volatility-dependent absorption of gas-phase volatile organic compounds (VOCs) to Teflon and other polymers. Polymer–VOC interactions are relevant for atmospheric chemistry sampling, as gas–wall partitioning in polymer tubing can cause delays and biases during measurements. They are also relevant to the study of indoor chemistry, where polymer-based materials are abundant (e.g., carpets and paints). In this work, we quantify the absorptive capacities of multiple tubing materials, including four nonconductive polymers (important for gas sampling and indoor air quality), four electrically conductive polymers and two commercial steel coatings (for gas and particle sampling). We compare their performance to previously characterized materials. To quantify the absorptive capacities, we expose the tubing to a series of ketones in the volatility range 104–109 µg m−3 and monitor transmission. For slow-diffusion polymers (e.g., perfluoroalkoxy alkane (PFA) Teflon and nylon), absorption is limited to a thin surface layer, and a single-layer absorption model can fit the data well. For fast-diffusion polymers (e.g., polyethylene and conductive silicone), a larger depth of the polymer is available for diffusion, and a multilayer absorption model is needed. The multilayer model allows fitting solid-phase diffusion coefficients for different materials, which range from 4×10-9 to 4×10-7 cm2 s−1. These diffusion coefficients are ∼ 8 orders of magnitude larger than literature values for fluorinated ethylene propylene (FEP) Teflon film. This enormous difference explains the differences in VOC absorption measured here. We fit an equivalent absorptive mass (CW, µg m−3) for each absorptive material. We found PFA to be the least absorptive, with CW ∼ 105 µg m−3, and conductive silicone to be the most absorptive, with CW ∼ 1013 µg m−3. PFA transmits VOCs easily and intermediate-volatility species (IVOCs) with quantifiable delays. In contrast, conductive silicone tubing transmits only the most volatile VOCs, denuding all lower-volatility species. Semi-volatile species (SVOCs) are very difficult to sample quantitatively through any tubing material. We demonstrate a system combining several slow- and fast-diffusion tubing materials that can be used to separate a mixture of VOCs into volatility classes. New conductive silicone tubing contaminated the gas stream with siloxanes, but this effect was reduced 10 000-fold for aged tubing, while maintaining the same absorptive properties. SilcoNert (tested in this work) and Silonite (tested in previous work) steel coatings showed gas transmission that was almost as good as PFA, but since they undergo adsorption, their delay times may be humidity- and concentration-dependent.more » « less
-
Abstract For global deployment of proton exchange membrane fuel cells, achieving optimal interaction between the components of the cathode active layer remains challenging. Studies addressing the effect of nanoparticle location (inside vs outside of pores) on performance and durability mostly compare porous and nonporous carbon supports, thus coming short of decoupling nanoparticle locality from carbon support effects. To address the influence of nanoparticle locality on performance and durability, new carbon‐supported electrocatalysts with designed and distinct nanoparticle localities are presented. The developed methodology allows to place Pt nanoparticles preferentially inside or outside of the mesopores of conductive carbon supports from materials under development at Cabot Corporation. Synthesis protocols are tuned to control nanoparticle size, crystallinity, and loading; this way the effect of Pt locality can be studied for two experimental carbon supports in isolation from all other parameters. For one carbon support, Pt active surface area and activity are significantly lower when nanoparticles are placed inside the pores. In contrast, for another, more graphitic carbon support, placing nanoparticles inside or outside of the carbon pores produces no appreciable difference in active surface area and performance rotating disk electrode measurements. Given their carefully tailored structure, these catalysts provide a framework for evaluating locality‐performance‐durability relationships.more » « less
-
Abstract While the archival digital memory industry approaches its physical limits, the demand is significantly increasing, therefore alternatives emerge. Recent efforts have demonstrated DNA’s enormous potential as a digital storage medium with superior information durability, capacity, and energy consumption. However, the majority of the proposed systems require on-demand de-novo DNA synthesis techniques that produce a large amount of toxic waste and therefore are not industrially scalable and environmentally friendly. Inspired by the architecture of semiconductor memory devices and recent developments in gene editing, we created a molecular digital data storage system called “DNA Mutational Overwriting Storage” (DMOS) that stores information by leveraging combinatorial, addressable, orthogonal, and independent in vitro CRISPR base-editing reactions to write data on a blank pool of greenly synthesized DNA tapes. As a proof of concept, this work illustrates writing and accurately reading of both a bitmap representation of our school’s logo and the title of this study on the DNA tapes.more » « less
-
Adhesive tapes are versatile and widely used yet lack adhesion strength due to their tendency to fail via peeling, a weak failure mode. A tape with surprising adhesive properties is the recluse spider's 50 nm-thin silk ribbon with a 1 : 150 aspect ratio. Junctions of these microscopic sticky tapes can withstand the material's tensile failure stress of ≈1 GPa. We modeled these natural tape–tape junctions and revealed a bi-modal failure behavior, critically dependent on the two tapes’ intersection angle. One mode leads to regular, low-strength peeling failure, while the other causes the junction to self-strengthen, eliminating the inherent weakness in peeling. This self-strengthening mechanism locks the two tapes together, increasing the junction strength by 550% and allowing some junctions to remain intact after tensile failure. This impressive adhesive strength of tapes has never before been observed or predicted. We found that recluse spiders make tape junctions with pre-stress to force the locked, high-strength failure mode. We used this approach to make junctions with synthetic adhesive tapes that overcame the weak peeling failure.more » « less
An official website of the United States government

