skip to main content


Title: A Comprehensive Professional Development Program for K-8 Teachers to Teach Computer Science
The Adapt, Implement, and Research at Nebraska (AIR@NE) project, funded by the NSF CSforAll Researcher-Practitioner Partnership (RPP) program, examines the adaptation of a validated K-8 Computer Science (CS) curriculum in diverse school districts statewide. Our Research-Practitioner Partnership is primarily between the University of Nebraska-Lincoln, the Lincoln Public Schools, and other diverse school districts across Nebraska. Our primary goal is to study and document how different districts, including rural, predominantly minority, and Native American reservation, adopt the curriculum and broaden participation in CS. In addition, the project is developing instructional capacity for K-8 CS education with diverse learners. Our research also adapts and develops teacher and student CS assessments, and documents case studies using design-based research methodology to show how an adaptive curriculum broadens CS participation. Our Professional Development (PD) program for K-8 CS teachers is comprehensive. It consists of three summer courses for each cohort and a series of workshops during the academic year. Of the three summer courses, two are administered in the first year for a cohort: (1) an introduction to computer science course where teachers learn fundamental CS topics and programming in a high-level programming language (e.g., Python), and engage in problem solving and practice computational thinking, and (2) a course in pedagogy for teachers to learn how to teach K-8 CS, including lesson designs, use of instructional resources such as dot-and-dash robots, and assessments. Then, the following academic year after the summer, the PD program holds a series of workshops on five separate Saturdays to support teacher implementation of their lesson modules during the academic year, reflect and improve on their lessons, reinforce on CS concepts and pedagogy techniques, review and adopt alternative instructional resources, and share insights. These Saturday workshops also facilitate further community building and resource sharing. The third course occurs in the second year for a cohort, involving dissemination of research results from the team to the teachers, opportunities to discuss new resources and approaches on teaching CS concepts and computational thinking, and sharing of experiences and insights after teachers have completed one academic year of teaching CS. Unlike the first two courses that are required of teachers, this third course is an opt-in course that combines more in- depth pedagogy and elements of leadership. Thus far, we have had two cohorts and used the design methodology to revise our PD program, making our design more robust based on the lessons learned over the two years. The course materials, assessment, and survey instruments have also been improved. While the project is on-going we have data to that indicates the impact of the work so far. There were significant pre-post gains for both cohorts in teachers’ knowledge of computer science concepts and computational thinking. Scores on the computational thinking assessment were higher than those for CS concepts, which was to be expected given their CS teaching experience. Moreover, in both cohorts, the teachers’ confidence in teaching CS improved significantly.  more » « less
Award ID(s):
1837476
PAR ID:
10545541
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Virtual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasingly professional development (PD) programs have been designed and implemented for pre-service and in-service teachers to acquire CS content knowledge and CS pedagogy and instructional strategies for K-12 students. This paper reports on our adaptation, implementation and research program for K-8 CS teachers across a Midwestern state. More specifically, its PD program for K-8 CS teachers consists of a summer institute with two graduate courses and a series of Saturday workshops during the subsequent academic year. This paper focuses on the two summer courses: one on CS knowledge content including computational thinking, variables, conditionals, loops, arrays, functions, and algorithms, and one instructional strategies, student pedagogy, computer-aided education resources, and community building. We report our SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of the two summer institutes involving the two courses to identify what went well and what needed improvement. This paper also reviews best practices for summer PD. 
    more » « less
  2. Broadening participation in computer science (CS) for primary/elementary students is a growing movement, spurred by computing workforce demands and the need for younger students to develop skills in problem solving and critical/computational thinking. However, offering computer science instruction at this level is directly related to the availability of teachers prepared to teach the subject. Unfortunately, there are relatively few primary/elementary school teachers who have received formal training in computer science, and they often self-report a lack of CS subject matter expertise. Teacher development is a key factor to address these issues, and this paper describes professional development strategies and empirical impacts of a summer institute that included two graduate courses and a series of Saturday workshops during the subsequent academic year. Key elements included teaching a high-level programing language (Python and JavaScript), integrating CS content and pedagogy instruction, and involving both experienced K-12 CS teachers and University faculty as instructors. Empirical results showed that this carefully structured PD that incorporated evidence-based elements of sufficient duration, teacher active learning and collaboration, modeling, practice, and feedback can successfully impact teacher outcomes. Results showed significant gains in teacher CS knowledge (both pedagogy and content), self-efficacy, and perception of CS value. Moderating results - examining possible differential effects depending on teacher gender, years of teaching CS, and geographic locale - showed that the PD was successful with experienced and less experienced teachers, with teachers from both rural and urban locales, and with both males and females. 
    more » « less
  3. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  4. Marks, G. H. ; Schmidt-Crawford, D. (Ed.)
    The growing interest in offering computer science (CS) in public schools has illuminated the need for more trained K-8 educators. This paper provides initial evidence that carefully structured professional development (PD) that focuses both on CS skills/concepts and pedagogy can successfully impact teacher outcomes. Testing before and after the summer PD showed significant increases in teachers’ knowledge of CS concepts and computational thinking, as well as confidence in their CS skills and pedagogy. The only moderating effect was for rural versus urban differences in CS confidence. 
    more » « less
  5. D. Olanoff ; K. Johnson ; S. Spitzer (Ed.)
    Professional development (PD) that supports faculty in teaching courses for prospective secondary teachers, especially courses focused on mathematical knowledge for teaching, are largely absent from higher education, despite the need to improve instruction in these courses. This study examines a novel PD program whose structure was inspired by rehearsals (Lampert et al., 2013). We analyzed PD discussions throughout the year using an instructional triad framework, and we interpreted the PD structure using Clarke and Hollingsworth’s (2002) Interconnected Model for Professional Growth. We suggest that a rehearsal-inspired pedagogy offered opportunities for faculty growth in attending to student contributions. 
    more » « less