skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph Sparsifications using Neural Network Assisted Monte Carlo Tree Search
Graph neural networks have been successful for machine learning, as well as for combinatorial and graph problems such as the Subgraph Isomorphism Problem and the Traveling Salesman Problem. We describe an approach for computing graph sparsifiers by combining a graph neural network and Monte Carlo Tree Search. We first train a graph neural network that takes as input a partial solution and proposes a new node to be added as output. This neural network is then used in a Monte Carlo search to compute a sparsifier. The proposed method consistently outperforms several standard approximation algorithms on different types of graphs and often finds the optimal solution.  more » « less
Award ID(s):
2212129
PAR ID:
10545565
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ArXiv
Date Published:
Edition / Version:
1
Volume:
2311
Issue:
10316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we discuss the relevance and effectiveness of two com-mon methods for searching decision trees that represent design problems. When design problems are encoded in decision trees they are of-ten multimodal, capture a range of complexity in valid solutions, and have distinguishable internal locations. We propose the use of a simple Color Graph problem to represent these characteristics. The two methods evaluated are a genetic algorithm and a Monte Carlo tree search. Using the Color Graph problem, it is demonstrated that a genetic algorithm can perform exceptionally well on such unbounded and opaque design decision trees and that Monte Carlo tree searches are ineffective. Insights from this experiment are used to draw conclusions about the nature of design problems stored in decision trees and the need for new methods to search such trees and lead us to believe that exploitative methods are more effective than rigorously explorative methods. 
    more » « less
  2. This paper presents a method that uses neural networks as a caching mechanism to reduce the variance of Monte Carlo Partial Differential Equation solvers, such as the Walk-on-Spheres algorithm [Sawhney and Crane 2020]. While these Monte Carlo PDE solvers have the merits of being unbiased and discretization-free, their high variance often hinders real-time applications. On the other hand, neural networks can approximate the PDE solution, and evaluating these networks at inference time can be very fast. However, neural-network-based solutions may suffer from convergence difficulties and high bias. Our hybrid system aims to combine these two potentially complementary solutions by training a neural field to approximate the PDE solution using supervision from a WoS solver. This neural field is then used as a cache in the WoS solver to reduce variance during inference. We demonstrate that our neural field training procedure is better than the commonly used self-supervised objectives in the literature. We also show that our hybrid solver exhibits lower variance than WoS with the same computational budget: it is significantly better for small compute budgets and provides smaller improvements for larger budgets, reaching the same performance as WoS in the limit. 
    more » « less
  3. Graphs serve as generic tools to encode the underlying relational structure of data. Often this graph is not given, and so the task of inferring it from nodal observations becomes important. Traditional approaches formulate a convex inverse problem with a smoothness promoting objective and rely on iterative methods to obtain a solution. In supervised settings where graph labels are available, one can unroll and truncate these iterations into a deep network that is trained end-to-end. Such a network is parameter efficient and inherits inductive bias from the optimization formulation, an appealing aspect for data constrained settings in, e.g., medicine, finance, and the natural sciences. But typically such settings care equally about \textit{uncertainty} over edge predictions, not just point estimates. Here we introduce novel iterations with independently interpretable parameters, i.e., parameters whose values - independent of other parameters' settings - proportionally influence characteristics of the estimated graph, such as edge sparsity. After unrolling these iterations, prior knowledge over such graph characteristics shape prior distributions} over these independently interpretable network parameters to yield a Bayesian neural network (BNN) capable of graph structure learning (GSL) from smooth signal observations. Fast execution and parameter efficiency allow for high-fidelity posterior approximation via Markov Chain Monte Carlo (MCMC) and thus uncertainty quantification on edge predictions. Informative priors unlock modeling tools from Bayesian statistics like prior predictive checks. Synthetic and real data experiments corroborate this model's ability to provide well-calibrated estimates of uncertainty, in test cases that include unveiling economic sector modular structure from S&P500 data and recovering pairwise digit similarities from MNIST images. Overall, this framework enables GSL in modest-scale applications where uncertainty on the data structure is paramount 
    more » « less
  4. We propose an empirical Bayes formulation of the structure learning problem, where the prior specification assumes that all node variables have the same error variance, an assumption known to ensure the identifiability of the underlying causal directed acyclic graph. To facilitate efficient posterior computation, we approximate the posterior probability of each ordering by that of a best directed acyclic graph model, which naturally leads to an order-based Markov chain Monte Carlo algorithm. Strong selection consistency for our model in high-dimensional settings is proved under a condition that allows heterogeneous error variances, and the mixing behaviour of our sampler is theoretically investigated. Furthermore, we propose a new iterative top-down algorithm, which quickly yields an approximate solution to the structure learning problem and can be used to initialize the Markov chain Monte Carlo sampler. We demonstrate that our method outperforms other state-of-the-art algorithms under various simulation settings, and conclude the paper with a single-cell real-data study illustrating practical advantages of the proposed method. 
    more » « less
  5. Abstract Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and inference and parameter estimation via the usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. Specifically, we solve the problem of computational intractability and “degenerate” model behavior by an interpretable support restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in real-world networks. The new model family is supported on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting the degeneracy parameter to be maximal—they inherit good theoretical properties, while at the same time place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable. We study various theoretical properties of DERGMs and illustrate how the support restriction improves the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs. 
    more » « less