skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Complexity of Iterated Reversible Computation
We study a class of functional problems reducible to computing $$f^{(n)}(x)$$for inputs $$n$$ and $$x$$, where $$f$$ is a polynomial-time bijection. As we prove,the definition is robust against variations in the type of reduction used inits definition, and in whether we require $$f$$ to have a polynomial-time inverseor to be computible by a reversible logic circuit. These problems arecharacterized by the complexity class $$\mathsf{FP}^{\mathsf{PSPACE}}$$, andinclude natural $$\mathsf{FP}^{\mathsf{PSPACE}}$$-complete problems in circuitcomplexity, cellular automata, graph algorithms, and the dynamical systemsdescribed by piecewise-linear transformations.  more » « less
Award ID(s):
2212129
PAR ID:
10545628
Author(s) / Creator(s):
Publisher / Repository:
EPI
Date Published:
Journal Name:
TheoretiCS
Volume:
Volume 2
ISSN:
2751-4838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Guruswami, Venkatesan (Ed.)
    Relational problems (those with many possible valid outputs) are different from decision problems, but it is easy to forget just how different. This paper initiates the study of FBQP/qpoly, the class of relational problems solvable in quantum polynomial-time with the help of polynomial-sized quantum advice, along with its analogues for deterministic and randomized computation (FP, FBPP) and advice (/poly, /rpoly). Our first result is that FBQP/qpoly ≠ FBQP/poly, unconditionally, with no oracle - a striking contrast with what we know about the analogous decision classes. The proof repurposes the separation between quantum and classical one-way communication complexities due to Bar-Yossef, Jayram, and Kerenidis. We discuss how this separation raises the prospect of near-term experiments to demonstrate "quantum information supremacy," a form of quantum supremacy that would not depend on unproved complexity assumptions. Our second result is that FBPP ̸ ⊂ FP/poly - that is, Adleman’s Theorem fails for relational problems - unless PSPACE ⊂ NP/poly. Our proof uses IP = PSPACE and time-bounded Kolmogorov complexity. On the other hand, we show that proving FBPP ̸ ⊂ FP/poly will be hard, as it implies a superpolynomial circuit lower bound for PromiseBPEXP. We prove the following further results: - Unconditionally, FP ≠ FBPP and FP/poly ≠ FBPP/poly (even when these classes are carefully defined). - FBPP/poly = FBPP/rpoly (and likewise for FBQP). For sampling problems, by contrast, SampBPP/poly ≠ SampBPP/rpoly (and likewise for SampBQP). 
    more » « less
  2. Oshman, Rotem (Ed.)
    In this work, we study the class of problems solvable by (deterministic) Adaptive Massively Parallel Computations in constant rounds from a computational complexity theory perspective. A language L is in the class AMPC⁰ if, for every ε > 0, there is a deterministic AMPC algorithm running in constant rounds with a polynomial number of processors, where the local memory of each machine s = O(N^ε). We prove that the space-bounded complexity class ReachUL is a proper subclass of AMPC⁰. The complexity class ReachUL lies between the well-known space-bounded complexity classes Deterministic Logspace (DLOG) and Nondeterministic Logspace (NLOG). In contrast, we establish that it is unlikely that PSPACE admits AMPC algorithms, even with polynomially many rounds. We also establish that showing PSPACE is a subclass of nonuniform-AMPC with polynomially many rounds leads to a significant separation result in complexity theory, namely PSPACE is a proper subclass of EXP^{Σ₂^{𝖯}}. 
    more » « less
  3. Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ Quasi - NP = NTIME [ n ( log n ) O ( 1 ) ] and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ C , by showing that$$\mathcal { C}$$ C admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ C . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ i x i . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ C , faster#SAT algorithms for$$\mathcal { C}$$ C circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ f C , which may bestrongerthan$$\mathcal { C}$$ C itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ C -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ 2 n ε -size$$\mathcal { C}$$ C -circuits running in$$2^{n-n^{{\varepsilon }}}$$ 2 n n ε time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class. 
    more » « less
  4. The communication class UPP cc is a communication analog of the Turing Machine complexity class PP . It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f , let f ∧ f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP cc ( f ) = O (log n ), and UPP cc ( f ∧ f ) = Θ (log 2 n ). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP cc , the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n Omega Ω(log n ) . This matches an upper bound of (Klivans, O’Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time. 
    more » « less
  5. The communication class UPP^{cc} is a communication analog of the Turing Machine complexity class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f, let f wedge f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP^{cc}(f)= O(log n), and UPP^{cc}(f wedge f) = Theta(log^2 n). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP^{cc}, the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n^{Omega(log n)}. This matches an upper bound of (Klivans, O'Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time. 
    more » « less