skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of Gaia DR3 Orbital and Acceleration Solutions with Hierarchical Triples
Abstract Using data from Gaia DR3, we construct a sample of 14,791 gravitationally bound wide pairs in which one of the components is an unresolved binary with an astrometric orbital or acceleration solution. These systems are hierarchical triples, with inner binary separations of order 1 au, and outer separations of 100–100,000 au. Leveraging the fact that the inner binary and outer tertiary should have nearly identical parallaxes, we use the sample to calibrate the parallax uncertainties for orbital and acceleration binary solutions. We find that the parallax uncertainties of orbital solutions are typically underestimated by a factor of 1.3 atG> 14, and by a factor of 1.7 atG= 8–14. The true parallax uncertainties are nevertheless a factor of ∼10 smaller than those of the single-star astrometric solutions for the same sources. The parallax uncertainties of acceleration solutions are underestimated by larger factors of 2–3 but still represent a significant improvement compared to the sources’ single-star solutions. We provide tabulated uncertainty inflation factors for astrometric binary solutions and make the catalog of hierarchical triples publicly available.  more » « less
Award ID(s):
2307232
PAR ID:
10545771
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
136
Issue:
9
ISSN:
0004-6280
Format(s):
Medium: X Size: Article No. 094203
Size(s):
Article No. 094203
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract More than half of all main-sequence (MS) stars have one or more companions, and many of those with initial masses <8Mare born in hierarchical triples. These systems feature two stars in a close orbit (the inner binary) while a tertiary star orbits them on a wider orbit (the outer binary). In hierarchical triples, three-body dynamics combined with stellar evolution drives interactions and, in many cases, merges the inner binary entirely to create a renovated “post-merger binary” (PMB). By leveraging dynamical simulations and tracking binary interactions, we explore the outcomes of merged triples and investigate whether PMBs preserve signatures of their three-body history. Our findings indicate that in 26%–54% of wide double white dwarf (DWD) binaries (s≳ 100 au), the more massive white dwarf (WD) is a merger product, implying that these DWD binaries were previously triples. Overall, we estimate that 44% ± 14% of observed wide DWDs originated in triple star systems and thereby have rich dynamical histories. We also examine MS+MS and MS+red giant mergers manifesting as blue straggler stars (BSSs). These PMBs have orbital configurations and ages similar to most observed BSS binaries. While the triple+merger formation channel can explain the observed chemical abundances, moderate eccentricities, and companion masses in BSS binaries, it likely only accounts for ∼20%–25% of BSSs. Meanwhile, we predict that the majority of observed single BSSs formed as collisions in triples and harbor long-period (>10 yr) companions. Furthermore, both BSS binaries and DWDs exhibit signatures of WD birth kicks. 
    more » « less
  2. ABSTRACT The third data release of Gaia was the first to include orbital solutions assuming non-single stars. Here, we apply the astrometric triage technique of Shahaf et al. to identify binary star systems with companions that are not single main-sequence stars. Gaia’s synthetic photometry of these binaries is used to distinguish between systems likely to have white-dwarf companions and those that may be hierarchical triples. The study uncovered a population of nearly $$3\, 200$$ binaries, characterized by orbital separations on the order of an astronomical unit, in which the faint astrometric companion is probably a white dwarf. This sample increases the number of orbitally solved binary systems of this type by about two orders of magnitude. Remarkably, over 110 of these systems exhibit significant ultraviolet excess flux, confirming this classification and, in some cases, indicating their relatively young cooling ages. We show that the sample is not currently represented in synthetic binary populations, and is not easily reproduced by available binary population synthesis codes. Therefore, it challenges current binary evolution models, offering a unique opportunity to gain insights into the processes governing white-dwarf formation, binary evolution, and mass transfer. 
    more » « less
  3. Abstract We present a catalog of ∼10,000 resolved triple star systems within 500 pc of the Sun, constructed using Gaia data. The triples include main-sequence, red giant, and white dwarf components spanning separations of 10–50,000 au. A well-characterized selection function allows us to constrain intrinsic demographics of the triple star population. We find that (a) all systems are compatible with being hierarchical and dynamically stable; (b) mutual orbital inclinations are isotropic for wide triples but show modest alignment as the systems become more compact; (c) primary masses follow a Kroupa initial mass function weighted by the triple fraction; (d) inner binary orbital periods, eccentricities, and mass ratios mirror those of isolated binaries, including a pronounced twin excess (mass ratios greater than 0.95) out to separations of 1000+ au, suggesting a common formation pathway; (e) tertiary mass ratios follow a power-law distribution with slope −1.4; (f) tertiary orbits are consistent with a log-normal period distribution and thermal eccentricities, subject to dynamical stability. Informed by these observations, we develop a publicly available prescription for generating mock triple star populations. Finally, we estimate the catalog’s completeness and infer the intrinsic triple fraction, which rises steadily with primary mass: from 5% at ≲0.5Mto 35% at 2M. The public catalog provides a robust testbed for models of triple star formation and evolution. 
    more » « less
  4. null (Ed.)
    ABSTRACT We construct from Gaia eDR3 an extensive catalogue of spatially resolved binary stars within ≈1 kpc of the Sun, with projected separations ranging from a few au to 1 pc. We estimate the probability that each pair is a chance alignment empirically, using the Gaia catalogue itself to calculate the rate of chance alignments as a function of observables. The catalogue contains 1.3 (1.1) million binaries with >90 per cent (>99 per cent) probability of being bound, including 16 000 white dwarf – main-sequence (WD + MS) binaries and 1400 WD + WD binaries. We make the full catalogue publicly available, as well as the queries and code to produce it. We then use this sample to calibrate the published Gaia DR3 parallax uncertainties, making use of the binary components’ near-identical parallaxes. We show that these uncertainties are generally reliable for faint stars (G ≳ 18), but are underestimated significantly for brighter stars. The underestimates are generally $$\leq30{{\ \rm per\ cent}}$$ for isolated sources with well-behaved astrometry, but are larger (up to ∼80 per cent) for apparently well-behaved sources with a companion within ≲4 arcsec, and much larger for sources with poor astrometric fits. We provide an empirical fitting function to inflate published σϖ values for isolated sources. The public catalogue offers wide ranging follow-up opportunities: from calibrating spectroscopic surveys, to precisely constraining ages of field stars, to the masses and the initial–final mass relation of WDs, to dynamically probing the Galactic tidal field. 
    more » « less
  5. Abstract The formation of cataclysmic variables (CVs) has long been modeled as a product of common envelope evolution (CEE) in isolated binaries. However, a significant fraction of intermediate-mass stars—the progenitors of the white dwarfs (WDs) in CVs—are in triples. We therefore investigate the importance of triple star dynamics in CV formation. Using Gaia astrometry and existing CV catalogs, we construct a sample of ∼50 CVs in hierarchical triples within 1 kpc of the Sun, containing main-sequence and WD tertiaries at separations of 100–30,000 au. We infer that at least 10% of CVs host wide tertiaries. To interpret this discovery, we evolve a population of 2000 triples using detailed three-body simulations, 47 of which become CVs. We predict that 20% of CVs in triples form without ever experiencing CEE, where the WD and donor are brought together by the eccentric Kozai-Lidov mechanism after the formation of the WD. These systems favor larger donor stars and longer birth orbital periods (8–20 hr) than typical CVs. Among systems that do undergo CEE, about half would not have interacted without the presence of the tertiary. Triple formation channels both with and without CEE require initially wide inner orbits (≳1 au), which in turn require larger tertiary separations to be stable. Consistent with this prediction, we find that the observed Gaia CV triples have wider separations on average than normal wide binaries selected in the same way. Our work underscores the importance of triples in shaping interacting binary populations including CVs, ultracompact binaries, and low-mass X-ray binaries. 
    more » « less