skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TIC 290061484: A Triply Eclipsing Triple System with the Shortest Known Outer Period of 24.5 Days
Abstract We have discovered a triply eclipsing triple-star system, TIC 290061484, with the shortest known outer period,Pout, of only 24.5 days. This “eclipses” the previous record set byλTauri at 33.02 days, which held for 68 yr. The inner binary, with an orbital period ofPin= 1.8 days, produces primary and secondary eclipses and exhibits prominent eclipse timing variations with the same periodicity as the outer orbit. The tertiary star eclipses, and is eclipsed by, the inner binary with pronounced asymmetric profiles. The inclinations of both orbits evolve on observable timescales such that the third-body eclipses exhibit dramatic depth variations in TESS data. A photodynamical model provides a complete solution for all orbital and physical parameters of the triple system, showing that the three stars have masses of 6.85, 6.11, and 7.90M, radii near those corresponding to the main sequence, andTeffin the range of 21,000–23,700 K. Remarkably, the model shows that the triple is in fact a subsystem of a hierarchical 2+1+1 quadruple with a distant fourth star. The outermost star has a period of ∼3200 days and a mass comparable to the stars in the inner triple. In ∼20 Myr, all three components of the triple subsystem will merge, undergo a Type II supernova explosion, and leave a single remnant neutron star. At the time of writing, TIC 290061484 is the most compact triple system and one of the tighter known compact triples (i.e.,Pout/Pin= 13.7).  more » « less
Award ID(s):
2206814
PAR ID:
10546225
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 25
Size(s):
Article No. 25
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the discovery of two quadruple star systems—TIC 285853156 and TIC 392229331—each consisting of two bound eclipsing binary stars. Among the most compact quadruples known, TIC 392229331 and TIC 285853156 have the second and third shortest outer orbital periods (145 days and 152 days, respectively) after BU Canis Minoris (122 days). We demonstrate that both systems are long-term dynamically stable despite substantial outer orbital eccentricities (0.33 for TIC 285853156 and 0.56 for TIC 392229331). We previously reported these systems in V. B. Kostov et al. and V. B Kostov et al. as 2 + 2 hierarchical quadruple candidates producing two sets of primary and secondary eclipses in TESS data, as well as prominent eclipse timing variations on both binary components. We combine all available TESS data and new spectroscopic observations into a comprehensive photodynamical model, proving that the component binary stars are gravitationally bound in both systems and finding accurate stellar and orbital parameters for both systems, including very precise determinations of the outer periods. TIC 285853156 and TIC 392229331 represent the latest addition to the small population of well-characterized proven quadruple systems dynamically interacting on detectable timescales. 
    more » « less
  2. Abstract V907 Scorpii is a unique triple system in which the inner binary component has been reported to have switched on and off eclipses several times in modern history. In spite of its peculiarity, observational data on this system are surprisingly scarce. Here we make use of the recent Transiting Exoplanet Survey Satellite observations, as well as our own photometric and spectroscopic data, to expand the overall data set and study the V907 Sco system in more detail. Our analysis provides both new and improved values for several of its fundamental parameters: (i) the masses of the stars in the eclipsing binary are 2.74 ± 0.02 M ⊙ and 2.56 ± 0.02 M ⊙ ; and (ii) the third component is a solar-type star with mass 1.06 − 0.10 + 0.11 M ⊙ (90% C.L.), orbiting the binary on an elongated orbit with an eccentricity of 0.47 ± 0.02 and a period of 142.01 ± 0.05 days. The intermittent intervals of time when eclipses of the inner binary are switched on and off are caused by a mutual 26 .° 2 − 2.2 + 2.6 inclination of the inner- and outer-orbit planes, and a favorable inclination of about 71° of the total angular momentum of the system. The nodal precession period is P ν = 63.5 − 2.6 + 3.3 yr. The inner binary will remain eclipsing for another ≃26 yr, offering an opportunity to significantly improve the parameters of the model. This is especially true during the next decade when the inner-orbit inclination will increase to nearly 90°. Further spectroscopic observations are also desirable, as they can help to improve constraints on the system’s orbital architecture and its physical parameters. 
    more » « less
  3. Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025Mand a radius of 0.4250 ± 0.0091R. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029Mand a radius of 0.5299 ± 0.0091R. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K). 
    more » « less
  4. Abstract More than half of all main-sequence (MS) stars have one or more companions, and many of those with initial masses <8Mare born in hierarchical triples. These systems feature two stars in a close orbit (the inner binary) while a tertiary star orbits them on a wider orbit (the outer binary). In hierarchical triples, three-body dynamics combined with stellar evolution drives interactions and, in many cases, merges the inner binary entirely to create a renovated “post-merger binary” (PMB). By leveraging dynamical simulations and tracking binary interactions, we explore the outcomes of merged triples and investigate whether PMBs preserve signatures of their three-body history. Our findings indicate that in 26%–54% of wide double white dwarf (DWD) binaries (s≳ 100 au), the more massive white dwarf (WD) is a merger product, implying that these DWD binaries were previously triples. Overall, we estimate that 44% ± 14% of observed wide DWDs originated in triple star systems and thereby have rich dynamical histories. We also examine MS+MS and MS+red giant mergers manifesting as blue straggler stars (BSSs). These PMBs have orbital configurations and ages similar to most observed BSS binaries. While the triple+merger formation channel can explain the observed chemical abundances, moderate eccentricities, and companion masses in BSS binaries, it likely only accounts for ∼20%–25% of BSSs. Meanwhile, we predict that the majority of observed single BSSs formed as collisions in triples and harbor long-period (>10 yr) companions. Furthermore, both BSS binaries and DWDs exhibit signatures of WD birth kicks. 
    more » « less
  5. The two known planets in the planetary system of Teegarden’s Star are among the most Earth-like exoplanets currently known. Revisiting this nearby planetary system with two planets in the habitable zone aims at a more complete census of planets around very low-mass stars. A significant number of new radial velocity measurements from CARMENES, ESPRESSO, MAROON-X, and HPF, as well as photometry from TESS motivated a deeper search for additional planets. We confirm and refine the orbital parameters of the two know planets Teegarden’s Star b and c. We also report the detection of a third planet d with an orbital period of 26.13 ± 0.04 days and a minimum mass of 0.82 ± 0.17M. A signal at 96 days is attributed to the stellar rotation period. The interpretation of a signal at 172 days remains open. The TESS data exclude transiting short-period planets down to about half an Earth radius. We compare the planetary system architecture of very low-mass stars. In the currently known configuration, the planetary system of Teegarden’s star is dynamically quite different from that of TRAPPIST-1, which is more compact, but dynamically similar to others such as GJ 1002. 
    more » « less