skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mode-dependent scaling of nonlinearity and linear dynamic range in a NEMS resonator
Even a relatively weak drive force is enough to push a typical nanomechanical resonator into the nonlinear regime. Consequently, nonlinearities are widespread in nanomechanics and determine the critical characteristics of nanoelectromechanical systems' (NEMSs) resonators. A thorough understanding of the nonlinear dynamics of higher eigenmodes of NEMS resonators would be beneficial for progress, given their use in applications and fundamental studies. Here, we characterize the nonlinearity and the linear dynamic range (LDR) of each eigenmode of two nanomechanical beam resonators with different intrinsic tension values up to eigenmode n = 11. We find that the modal Duffing constant increases as n4, while the critical amplitude for the onset of nonlinearity decreases as 1/n. The LDR, determined from the ratio of the critical amplitude to the thermal noise amplitude, increases weakly with n. Our findings are consistent with our theory treating the beam as a string, with the nonlinearity emerging from stretching at high amplitudes. These scaling laws, observed in experiments and validated theoretically, can be leveraged for pushing the limits of NEMS-based sensing even further.  more » « less
Award ID(s):
2001559 1934271 2001403 1934370
PAR ID:
10546235
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
125
Issue:
8
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade. Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a clamped–clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems. 
    more » « less
  2. Micro- and nanoelectromechanical systems have numerous applications in sensing and signal transduction. Many properties benefit from reducing the system size to the nanoscale, such as increased responsivity, enhanced tunability, lower power consumption, and higher spatial density. Two-dimensional (2D) materials represent the ultimate limit of thickness, offering unprecedented new capabilities due to their natural nanoscale dimensions, high stability, high mechanical strength, and easy electronic integration. Here, we review the primary design principles, properties, applications, opportunities, and challenges of 2D materials as the building blocks of NEMS (2D NEMS) with a focus on nanomechanical resonators. First, we review the techniques used to design, fabricate, and transduce the motion of 2D NEMS. Then, we describe the dynamic behavior of 2D NEMS including vibrational eigenmodes, frequency, nonlinear behavior, and dissipation. We highlight the crucial features of 2D NEMS that enhance or expand the functionalities found in conventional NEMS, such as high tunability and rich nonlinear dynamics. Next, we overview the demonstrated applications of 2D NEMS as sensors and actuators, comparing their performance metrics to those of commercial MEMS. Finally, we provide a perspective on the future directions of 2D NEMS, such as hybrid quantum systems, integration of active 2D layers into nanomechanical devices, and low-friction interfaces in micromachines. 
    more » « less
  3. Abstract We report the experimental demonstration of temperature compensated bilayer graphene two‐dimensional (2D) nanomechanical resonators operating in temperature range of 300 to 480 K. By using both microspectroscopy and scanning spectromicroscopy techniques, spatially visualized undriven thermomechanical motion is conveniently used to monitor both the resonance frequency and temperature of the device via noise thermometry while the device is photothermally agitated. Thanks to engineerable naturally integrated temperature compensation of the graphene and gold clamps that minimize variations of built‐in tension in a wide temperature range, very small linear TCfs of ≈−39 and −84 ppm K−1are achieved in the graphene nanomechanical resonators. The measured TCfs are orders of magnitude smaller than those in other 2D resonant nanoelectromechanical systems (NEMS). The intricately coupled thermal tuning and strain effects are further examined, elucidating that TCfcan be further improved by optimizing device dimensions, which can be exploited for engineering highly stable NEMS resonators and oscillators for signal transduction and sensing applications. 
    more » « less
  4. Nanoelectromechanical systems (NEMS) enabled by two-dimensional (2D) magnetic materials are promising candidates for exploring ultrasensitive detection and magnetostrictive phenomena, thanks to their high mechanical stiffness, high strength, and ultralow mass. The resonance modes of such vibrating membrane NEMS can be probed optically and also manipulated mechanically via electrostatically induced strain. Electrostatic frequency tuning of 2D magnetic NEMS resonators is, thus, an important means of investigating magneto-mechanical coupling mechanisms. Toward realizing magneto-mechanical coupled devices, we build circular drumhead iron phosphorus trisulfide (FePS3) NEMS resonators with different diameters (3–7 μm). Here, we report on experimental demonstration of tunable antiferromagnet FePS3 drumhead resonators with the highest fractional frequency tuning range up to Δf/f0 = 32%. Combining experimental results and analytical modeling of the resonance frequency scaling, we attain quantitative understanding of the elastic behavior of FePS3, including the transition from “membrane” to “plate” regime, with built-in tension (γ) ranging from 0.1 to 2 N/m. This study not only offers methods for investigating mechanical properties of ultrathin membranes of magnetic 2D materials but also provides important guidelines for designing future high-performance magnetic NEMS resonators. 
    more » « less
  5. This article explores the nonlinear vibration of beams with different types of nonlinearities. The beam vibration was modeled using Hamilton’s principle, and the equation of motion was solved using method of multiple time scales. Three models were developed assuming (a) geometric nonlinearity, (b) material nonlinearity and (c) combined geometric and material nonlinearity. The material nonlinearity also included both third and fourth nonlinear elasticity terms. The frequency response equation of these models were further evaluated quantitatively and qualitatively. The models capture the hardening effect, i.e., increase in resonant frequency as a function of forcing amplitude for geometric nonlinearity, and the softening effect, i.e., decrease in resonant frequency for material nonlinearity. The model is applied on the first three bending modes of the cantilever beam. The effect of the fourth-order material nonlinearity was smaller compared to the third-order term in the first mode, whereas it is significantly larger in second and third mode. The combined nonlinearity models shows a discontinuous frequency shift, which was resolved by utilizing a set of transition assumptions. This results in a smooth transition between the material and geometric zones in amplitude. These parametric models allow us to fine tune the nonlinear response of the system by changing the physical properties such as geometry, linear and nonlinear elastic properties. 
    more » « less