Planar nanocrystal/bulk heterostructures are transformed into 3D architectures by taking advantage of the different chemical and mechanical properties of nanocrystal and bulk thin films. Nanocrystal/bulk heterostructures are fabricated via bottom‐up assembly and top‐down fabrication. The nanocrystals are capped by long ligands introduced in their synthesis, and therefore their surfaces are chemically addressable, and their assemblies are mechanically “soft,” in contrast to the bulk films. Chemical modification of the nanocrystal surface, exchanging the long ligands for more compact chemistries, triggers large volume shrinkage of the nanocrystal layer and drives bending of the nanocrystal/bulk heterostructures. Exploiting the differential chemo‐mechanical properties of nanocrystal and bulk materials, the scalable fabrication of designed 3D, cell‐sized nanocrystal/bulk superstructures is demonstrated, which possess unique functions derived from nanocrystal building blocks.
- Award ID(s):
- 2001968
- PAR ID:
- 10546251
- Publisher / Repository:
- MRS
- Date Published:
- Journal Name:
- MRS Communications
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 2159-6867
- Page Range / eLocation ID:
- 674 to 684
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The exploration of emerging quantum phenomena by stacking dissimilar atomic layered materials into van der Waals (vdW) heterostructures has driven the development of layer assembly techniques. Achieving ultralow disorder within these heterostructures is crucial for unlocking their novel physical properties. However, current fabrication methods for designer heterostructures have limitations in throughput, yield, and scalability. Over the past decade, engineering toolkits have evolved to address some of these challenges, but their adoption for fabricating designer heterostructures remains limited. In this review, an overview of these emerging engineering toolkits is provided, and examine their utility and limitations in achieving ultralow disordered heterostructures. It is hoped that the insights from this review article can help guide future research directions on advancing the fabrication process of designer heterostructures.
-
Perovskite SrIrO 3 films and its heterostructures are very promising, yet less researched, avenues to explore interesting physics originating from the interplay between strong spin–orbit coupling and electron correlations. Elemental iridium is a commonly used source for molecular beam epitaxy (MBE) synthesis of SrIrO 3 films. However, elemental iridium is extremely difficult to oxidize and evaporate while maintaining an ultra-high vacuum and a long mean free path. Here, we calculated a thermodynamic phase diagram to highlight these synthesis challenges for phase-pure SrIrO 3 and other iridium-based oxides. We addressed these challenges using a novel solid-source metal-organic MBE approach that rests on the idea of modifying the metal-source chemistry. Phase-pure, single-crystalline, coherent, epitaxial (001) pc SrIrO 3 films on (001) SrTiO 3 substrate were grown. Films demonstrated semi-metallic behavior, Kondo scattering, and weak antilocalization. Our synthesis approach has the potential to facilitate research involving iridate heterostructures by enabling their atomically precise syntheses.more » « less
-
The union of metal‐directed self‐assembly, dynamic covalent chemistry, and sorting gives rise to 3 new unsymmetrical tetrameric disulfide macrocycles. Stepwise sulfur extrusion from the self‐assembled disulfides to, first, thioethers, and then to hydrocarbons by photochemically promoted routes, gives rise to a collection of 7 new thioether and hydrocarbon cyclophanes related to the venerable family of [
n ]paracyclophanes. These methods provide an efficient self‐assembly approach to the synthesis of hydrocarbon macrocycles (related to carbon “nanohoops”), a class of structures that are typically formed in lengthier, stepwise syntheses. -
The structural versatility and vibrant surface chemistry of carbon materials offer tremendous opportunities for tailoring the catalytic performance of supported metal nanoparticles through the modulation of interfacial metal-support interactions (MSI). MSI’s geometric and structural effects are well documented for these materials. However, other potential support effects such as electronic metal-carbon interactions remain poorly understood. Such limitations are tied to constraints intrinsic to commonly available carbon materials such as activated carbon (e.g., microporosity) and the top-down approach that is often used for their synthesis. Nonetheless, it is crucial to understand the interplay between the structure, properties, and performance of carbon-supported metal catalysts to take steps toward rationalizing their design. The present study investigates promising and scalable bottom-up synthesis approaches, namely hydrothermal carbonization (HTC) and evaporation-induced self-assembly (EISA), that offer great flexibility for controlling the carbon structure. The opportunities and limitations of the methods are discussed with a particular focus on harnessing the power of oxygen functionalities. A remarkable production yield of 32.8% was achieved for mesoporous carbons synthesized via EISA. Moreover, these carbon materials present similar external surface areas of 316 ± 19 m2/g and average pore sizes of 10.0 ± 0.1 nm while offering flexibility to control the oxygen concentration in the range of 5–26 wt%. This study provides the cornerstone for future investigations of metal-carbon support interactions and the rational design of these catalysts.more » « less