skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PartialFibers: An efficient method for predicting Drug-Drug Interactions
Drug resistance is one of the fundamental challenges in modern medicine. Using combinations of drugs is an effective solution to counter drug resistance as is harder to develop resistance to multiple drugs simultaneously. Finding the correct dosage for each drug in the combination remains to be a challenging task. Testing all possible drug-drug combinations on various cell lines for different dosages in wet-lab experiments is infeasible since there are many combinations of drugs as well as their dosages yet the drugs and the cell lines are limited in availability and each wet-lab test is costly and time-consuming. Efficient and accurate in silico prediction methods are surely needed. Here we present a novel computational method, PartialFibers to address this challenge. Unlike existing prediction methods PartialFibers takes advantage of the distribution of the missing drug-drug interactions and effectively predicts the dosage of a drug in the combination. Our results on real datasets demonstrate that PartialFibers is more flexible, scalable, and achieves higher accuracy in less time than the state of the art algorithms.  more » « less
Award ID(s):
2111679
PAR ID:
10546369
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Format(s):
Medium: X
Location:
International Conference on Computational Advances in Bio and Medical Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Scott, Jacob G. (Ed.)
    The design of efficient combination therapies is a difficult key challenge in the treatment of complex diseases such as cancers. The large heterogeneity of cancers and the large number of available drugs renders exhaustive in vivo or even in vitro investigation of possible treatments impractical. In recent years, sophisticated mechanistic, ordinary differential equation-based pathways models that can predict treatment responses at a molecular level have been developed. However, surprisingly little effort has been put into leveraging these models to find novel therapies. In this paper we use for the first time, to our knowledge, a large-scale state-of-the-art pan-cancer signaling pathway model to identify candidates for novel combination therapies to treat individual cancer cell lines from various tissues (e.g., minimizing proliferation while keeping dosage low to avoid adverse side effects) and populations of heterogeneous cancer cell lines (e.g., minimizing the maximum or average proliferation across the cell lines while keeping dosage low). We also show how our method can be used to optimize the drug combinations used in sequential treatment plans—that is, optimized sequences of potentially different drug combinations—providing additional benefits. In order to solve the treatment optimization problems, we combine the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm with a significantly more scalable sampling scheme for truncated Gaussian distributions, based on a Hamiltonian Monte-Carlo method. These optimization techniques are independent of the signaling pathway model, and can thus be adapted to find treatment candidates for other complex diseases than cancers as well, as long as a suitable predictive model is available. 
    more » « less
  2. Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression. 
    more » « less
  3. Infections from parasitic nematodes (or roundworms) contribute to a significant disease burden and productivity losses for humans and livestock. The limited number of anthelmintics (or antinematode drugs) available today to treat these infections are rapidly losing their efficacy as multidrug resistance in parasites becomes a global health challenge. We propose an engineering approach to discover an anthelmintic drug combination that is more potent at killing wild-type Caenorhabditis elegans worms than four individual drugs. In the experiment, freely swimming single worms are enclosed in microfluidic drug environments to assess the centroid velocity and track curvature of worm movements. After analyzing the behavioral data in every iteration, the feedback system control (FSC) scheme is used to predict new drug combinations to test. Through a differential evolutionary search, the winning drug combination is reached that produces minimal centroid velocity and high track curvature, while requiring each drug in less than their EC 50 concentrations. The FSC approach is model-less and does not need any information on the drug pharmacology, signaling pathways, or animal biology. Toward combating multidrug resistance, the method presented here is applicable to the discovery of new potent combinations of available anthelmintics on C. elegans , parasitic nematodes, and other small model organisms. 
    more » « less
  4. Lu, Zhiyong (Ed.)
    Abstract MotivationForecasting the synergistic effects of drug combinations facilitates drug discovery and development, especially regarding cancer therapeutics. While numerous computational methods have emerged, most of them fall short in fully modeling the relationships among clinical entities including drugs, cell lines, and diseases, which hampers their ability to generalize to drug combinations involving unseen drugs. These relationships are complex and multidimensional, requiring sophisticated modeling to capture nuanced interplay that can significantly influence therapeutic efficacy. ResultsWe present a novel deep hypergraph learning method named Heterogeneous Entity Representation for MEdicinal Synergy (HERMES) prediction to predict the synergistic effects of anti-cancer drugs. Heterogeneous data sources, including drug chemical structures, gene expression profiles, and disease clinical semantics, are integrated into hypergraph neural networks equipped with a gated residual mechanism to enhance high-order relationship modeling. HERMES demonstrates state-of-the-art performance on two benchmark datasets, significantly outperforming existing methods in predicting the synergistic effects of drug combinations, particularly in cases involving unseen drugs. Availability and implementationThe source code is available at https://github.com/Christina327/HERMES. 
    more » « less
  5. Abstract Drug resistance poses a significant challenge in cancer treatment. Despite the initial effectiveness of therapies such as chemotherapy, targeted therapy and immunotherapy, many patients eventually develop resistance. To gain deep insights into the underlying mechanisms, single-cell profiling has been performed to interrogate drug resistance at cell level. Herein, we have built the DRMref database (https://ccsm.uth.edu/DRMref/) to provide comprehensive characterization of drug resistance using single-cell data from drug treatment settings. The current version of DRMref includes 42 single-cell datasets from 30 studies, covering 382 samples, 13 major cancer types, 26 cancer subtypes, 35 treatment regimens and 42 drugs. All datasets in DRMref are browsable and searchable, with detailed annotations provided. Meanwhile, DRMref includes analyses of cellular composition, intratumoral heterogeneity, epithelial–mesenchymal transition, cell–cell interaction and differentially expressed genes in resistant cells. Notably, DRMref investigates the drug resistance mechanisms (e.g. Aberration of Drug’s Therapeutic Target, Drug Inactivation by Structure Modification, etc.) in resistant cells. Additional enrichment analysis of hallmark/KEGG (Kyoto Encyclopedia of Genes and Genomes)/GO (Gene Ontology) pathways, as well as the identification of microRNA, motif and transcription factors involved in resistant cells, is provided in DRMref for user’s exploration. Overall, DRMref serves as a unique single-cell-based resource for studying drug resistance, drug combination therapy and discovering novel drug targets. 
    more » « less