skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post- translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell da- tasets, we developed ‘‘Trellis’’—a highly scalable, tree-based treatment effect analysis method. Trellis single- cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity—shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.  more » « less
Award ID(s):
2047856
PAR ID:
10546445
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Cell
Volume:
186
Issue:
25
ISSN:
0092-8674
Page Range / eLocation ID:
5606 to 5619.e24
Subject(s) / Keyword(s):
Single cell Optimal transport Patient-derived Organoids Phenoscape
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor–stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor–stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor–stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target. 
    more » « less
  2. Abstract 3D bioprinting improves orientation ofin vitrotumor models by offering layer by layer positioning of cancer cells and cancer associated fibroblasts (CAFs) which can replicate tumor microenvironment. Aim of this study was to develop a sodium alginate -gelatin (SA-GL) hydrogel by optimizing rheological parameters to print non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) cells and lung CAFs co-cultures. SA-GL hydrogels were prepared, and rheological properties were evaluated. Both the cells were mixed with the hydrogel and printed using INKREDIBLE bioprinter. Hydrogels prepared with 3.25% and 3.5% (w/v) SA and 4% (w/v) GL showed higher printability and cell viability. A significant decline in viscosity with shear rate was observed in these hydrogels suggesting the shear thinning property of hydrogels. Spheroid size distribution after 15 days was in the diameter range of 50–1100 µm. Up-regulation of vimentin, α-SMA and loss of E-cadherin in co-culture spheroids confirmed cellular crosstalk. This study demonstrates that rheological optimization of SA-GL hydrogel enhances printability and viability of NSCLC PDX and CAF co-culture which allows 3D co-culture spheroid formation within the printed scaffold. Therefore, this model can be used for studying high throughput drug screening and other pre-clinical applications. 
    more » « less
  3. Abstract Solid tumors develop within a complex environment called the tumor microenvironment (TME), which is sculpted by the presence of other cells, such as cancer‐associated fibroblasts (CAFs) and immune cells like macrophages (Mφs). Despite the presence of immune cells, tumor cells orchestrate a tumor‐supportive environment through intricate interaction with the components of the TME. However, the specific mechanism by which this intercellular dialogue is regulated is not fully understood. To that end, the development of an organotypic 3D breast TME‐on‐a‐chip (TMEC) model, integrated with single‐cell RNA sequencing analysis, is reported to mechanistically evaluate the progression of triple‐negative breast cancer (TNBC) cells in the presence of patient‐derived CAFs and Mφs. Extensive functional assays, including invasion and morphometric characterization, reveal the synergistic influence of CAFs and Mφs on tumor cells. Furthermore, gene expression and pathway enrichment analyses identify the involvement of theKYNUgene, suggesting a potential immune evasion mechanism through the kynurenine pathway. Lastly, the pharmacological targeting of the identified pathway is investigated. 
    more » « less
  4. Abstract There is a need for new in vitro systems that enable pharmaceutical companies to collect more physiologically-relevant information on drug response in a low-cost and high-throughput manner. For this purpose, three-dimensional (3D) spheroidal models have been established as more effective than two-dimensional models. Current commercial techniques, however, rely heavily on self-aggregation of dissociated cells and are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of control over extracellular matrix components and heterogeneity in shape, size, and aggregate forming tendencies. In this study, we overcome these challenges by coupling tissue engineering toolsets with microfluidics technologies to create engineered cancer microspheres. Specifically, we employ biosynthetic hydrogels composed of conjugated poly(ethylene glycol) (PEG) and fibrinogen protein (PEG-Fb) to create engineered breast and colorectal cancer tissue microspheres for 3D culture, tumorigenic characterization, and examination of potential for high-throughput screening (HTS). MCF7 and MDA-MB-231 cell lines were used to create breast cancer microspheres and the HT29 cell line and cells from a stage II patient-derived xenograft (PDX) were encapsulated to produce colorectal cancer (CRC) microspheres. Using our previously developed microfluidic system, highly uniform cancer microspheres (intra-batch coefficient of variation (CV) ≤ 5%, inter-batch CV < 2%) with high cell densities (>20×106 cells/ml) were produced rapidly, which is critical for use in drug testing. Encapsulated cells maintained high viability and displayed cell type-specific differences in morphology, proliferation, metabolic activity, ultrastructure, and overall microsphere size distribution and bulk stiffness. For PDX CRC microspheres, the percentage of human (70%) and CRC (30%) cells was maintained over time and similar to the original PDX tumor, and the mechanical stiffness also exhibited a similar order of magnitude (103 Pa) to the original tumor. The cancer microsphere system was shown to be compatible with an automated liquid handling system for administration of drug compounds; MDA-MB-231 microspheres were distributed in 384 well plates and treated with staurosporine (1 μM) and doxorubicin (10 μM). Expected responses were quantified using CellTiter-Glo® 3D, demonstrating initial applicability to HTS drug discovery. PDX CRC microspheres were treated with Fluorouracil (5FU) (10 to 500 μM) and displayed a decreasing trend in metabolic activity with increasing drug concentration. Providing a more physiologically relevant tumor microenvironment in a high-throughput and low-cost manner, the PF hydrogel-based cancer microspheres could potentially improve the translational success of drug candidates by providing more accurate in vitro prediction of in vivo drug efficacy. Citation Format: Elizabeth A. Lipke, Wen J. Seeto, Yuan Tian, Mohammadjafar Hashemi, Iman Hassani, Benjamin Anbiah, Nicole L. Habbit, Michael W. Greene, Dmitriy Minond, Shantanu Pradhan. Production of cancer tissue-engineered microspheres for high-throughput screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 175. 
    more » « less
  5. Abstract Colorectal cancer, a significant cause of cancer-related mortality, often exhibits drug resistance, highlighting the need for improved tumor models to advance personalized drug testing and precision therapy. We generated organoids from primary colorectal cancer cells cultured through the conditional reprogramming technique, establishing a framework to perform short-term drug testing studies on patient-derived cells. To model interactions with stromal cells in the tumor microenvironment, we combined cancer cell organoids with carcinoma-associated fibroblasts, a cell type implicated in disease progression and drug resistance. Our organotypic models revealed that carcinoma-associated fibroblasts promote cancer cell proliferation and stemness primarily through hepatocyte growth factor–MET paracrine signaling and activation of cyclin-dependent kinases. Disrupting these tumor–stromal interactions reduced organoid size while limiting oncogenic signals and cancer stemness. Leveraging this tumor model, we identified effective drug combinations targeting colorectal cancer cells and their tumorigenic activities. Our study highlights a path to incorporate patient-derived cells and tumor–stromal interactions into a drug testing workflow that could identify effective therapies for individual patients. 
    more » « less