The numerical solution of partial differential equations (PDEs) is challenging because of the need to resolve spatiotemporal features over wide length- and timescales. Often, it is computationally intractable to resolve the finest features in the solution. The only recourse is to use approximate coarse-grained representations, which aim to accurately represent long-wavelength dynamics while properly accounting for unresolved small-scale physics. Deriving such coarse-grained equations is notoriously difficult and often ad hoc. Here we introduce data-driven discretization, a method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations. Our approach uses neural networks to estimate spatial derivatives, which are optimized end to end to best satisfy the equations on a low-resolution grid. The resulting numerical methods are remarkably accurate, allowing us to integrate in time a collection of nonlinear equations in 1 spatial dimension at resolutions 4× to 8× coarser than is possible with standard finite-difference methods.
more »
« less
This content will become publicly available on July 2, 2025
Mesh-Clustered Gaussian Process Emulator for Partial Differential Equation Boundary Value Problems
Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this article, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.
more »
« less
- Award ID(s):
- 2113407
- PAR ID:
- 10546512
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- Technometrics
- Volume:
- 66
- Issue:
- 3
- ISSN:
- 0040-1706
- Page Range / eLocation ID:
- 406 to 421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations (PDEs). The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions. A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems. Hence, they are easy to be applied to a general hyperbolic system. To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains, inverse Lax-Wendroff (ILW) procedures were developed as a very effective approach in the literature. In this paper, we combine a fifth-order fixed-point fast sweeping WENO method with an ILW procedure to solve steady-state solution of hyperbolic conservation laws on complex computing regions. Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids. Numerical results show high-order accuracy and good performance of the method. Furthermore, the method is compared with the popular third-order total variation diminishing Runge-Kutta (TVD-RK3) time-marching method for steady-state computations. Numerical examples show that for most of examples, the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions.more » « less
-
In this paper, we apply a machine-learning approach to learn traveling solitary waves across various physical systems that are described by families of partial differential equations (PDEs). Our approach integrates a novel interpretable neural network (NN) architecture, called Separable Gaussian Neural Networks (SGNN) into the framework of Physics-Informed Neural Networks (PINNs). Unlike the traditional PINNs that treat spatial and temporal data as independent inputs, the present method leverages wave characteristics to transform data into the so-called co-traveling wave frame. This reformulation effectively addresses the issue of propagation failure in PINNs when applied to large computational domains. Here, the SGNN architecture demonstrates robust approximation capabilities for single-peakon, multi-peakon, and stationary solutions (known as “leftons”) within the (1+1)-dimensional, b-family of PDEs. In addition, we expand our investigations, and explore not only peakon solutions in the ab-family but also compacton solutions in (2+1)-dimensional, Rosenau-Hyman family of PDEs. A comparative analysis with multi-layer perceptron (MLP) reveals that SGNN achieves comparable accuracy with fewer than a tenth of the neurons, underscoring its efficiency and potential for broader application in solving complex nonlinear PDEs.more » « less
-
After a theory of morphogenesis in chemical cells was introduced in the 1950s, much attention had been devoted to the numerical solution of reaction-diffusion (RD) partial differential equations (PDEs). The Crank–Nicolson (CN) method has been a common second-order time-stepping procedure. However, the CN method may introduce spurious oscillations for nonsmooth data unless the time step size is sufficiently small. This article studies a nonoscillatory second-order time-stepping procedure for RD equations, called a variable- θ method , as a perturbation of the CN method. In each time level, the new method detects points of potential oscillations to implicitly resolve the solution there. The proposed time-stepping procedure is nonoscillatory and of a second-order temporal accuracy. Various examples are given to show effectiveness of the method. The article also performs a sensitivity analysis for the numerical solution of biological pattern forming models to conclude that the numerical solution is much more sensitive to the spatial mesh resolution than the temporal one. As the spatial resolution becomes higher for an improved accuracy, the CN method may produce spurious oscillations, while the proposed method results in stable solutions.more » « less
-
Abstract Traditional data-driven deep learning models often struggle with high training costs, error accumulation, and poor generalizability in complex physical processes. Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model. Most PiDL approaches regularize training by embedding governing equations into the loss function, yet this depends heavily on extensive hyperparameter tuning to weigh each loss term. To this end, we propose to leverage physics prior knowledge by “baking” the discretized governing equations into the neural network architecture via the connection between the partial differential equations (PDE) operators and network structures, resulting in a PDE-preserved neural network (PPNN). This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction accuracy, outperforming conventional black-box models. The effectiveness and merit of the proposed methods have been demonstrated across various spatiotemporal dynamical systems governed by spatiotemporal PDEs, including reaction-diffusion, Burgers’, and Navier-Stokes equations.more » « less