skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trade can buffer climate-induced risks and volatilities in crop supply
Abstract Climate change is intensifying the frequency and severity of extreme events, posing challenges to food security. Corn, a staple crop for billions, is particularly vulnerable to heat stress, a primary driver of yield variability. While many studies have examined the climate impact on average corn yields, little attention has been given to the climate impact on production volatility. This study investigates the future volatility and risks associated with global corn supply under climate change, evaluating the potential benefits of two key adaptation strategies: irrigation and market integration. A statistical model is employed to estimate corn yield response to heat stress and utilize NEX-GDDP-CMIP6 climate data to project future production volatility and risks of substantial yield losses. Three metrics are introduced to quantify these risks: Sigma (σ), the standard deviation of year-on-year yield change, which reflects overall yield volatility; Rho (ρ), the risk of substantial loss, defined as the probability of yield falling below a critical threshold; and beta (β), a relative risk coefficient that captures the volatility of a region’s corn production compared to the globally integrated market. The analysis reveals a concerning trend of increasing year-on-year yield volatility (σ) across most regions and climate models. This volatility increase is significant for key corn-producing regions like Brazil and the United States. While irrigated corn production exhibits a smaller rise in volatility, suggesting irrigation as a potential buffer against climate change impacts, it is not a sustainable option as it can cause groundwater depletion. On the other hand, global market integration reduces overall volatility and market risks significantly with less sustainability concerns. These findings highlight the importance of a multidimensional approach to adaptation in the food sector. While irrigation can benefit individual farmers, promoting global market integration offers a broader solution for fostering resilience and sustainability across the entire food system.  more » « less
Award ID(s):
2118329
PAR ID:
10546734
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Food Systems
Volume:
1
Issue:
2
ISSN:
2976-601X
Format(s):
Medium: X Size: Article No. 021004
Size(s):
Article No. 021004
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fluctuations in temperature and precipitation are expected to increase with global climate change, with more frequent, more intense and longer-lasting extreme events, posing greater challenges for the security of global food production. Here we proposed a generic framework to assess the impact of climate-induced crop yield risk under both current and future scenarios by combining a stochastic model for synthetic climate generation with a well-validated statistical crop yield model. The synthetic climate patterns were generated using the extended Empirical Orthogonal Function method based on historically observed and projected climate conditions. We applied our framework to assess the corn and soybean yield risk in the U.S. Midwest for historical and future climate conditions. We found that: (1) in the U.S. Midwest, about 45% and 40% of the interannual variability in corn and soybean yield, respectively, can be explained by the climate; (2) the risk level is higher in the southwest and northwest regions of the U.S. Midwest corresponding to 25% yield reduction for both corn and soybean compared to other regions; (3) the severity for the 1988 and 2012 major droughts quantified by our method represent 21-year and 30-year events for corn, and 7-year and 12-year events for soybean, respectively; (4) the crop yield risk will increase under a future climate scenario (i.e., Representative Concentration Pathway 8.5 or RCP 8.5 at 2050) compared with the current climate condition, with averaged yield decreases and yield variability increases for both corn and soybean. The framework and the results of this study enable applications for risk management policies and practices for the agriculture sectors. 
    more » « less
  2. Abstract Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability. 
    more » « less
  3. Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources. 
    more » « less
  4. Ahmed, Ferdous (Ed.)
    This study examines the lived experiences and adaptation strategies of small-scale farmers in the southwestern Brazilian Amazonian state of Rondônia, amidst escalating climate challenges. Through nine in-depth interviews, it uncovers the impact of unpredictable weather, increased temperatures, and shifting precipitation on agriculture and livelihoods. Participants, ranging from family farmers to agricultural collective members, detail shifts from traditional crop cultivation to more resilient practices like cattle ranching and dairy production. The narratives reveal a deep understanding of local climate volatility and its direct effects on water availability, crop viability, and livestock productivity. Farmers describe adaptation measures including new crop varieties, irrigation systems, and strategic land use to enhance biodiversity and mitigate climate change effects. Despite these adaptations, challenges like water scarcity, high input costs, and the need for technical assistance remain prominent. Farmers emphasize the need for stronger support systems, highlighting community solidarity, governmental aid, and access to sustainable technologies and education as essential for climate adaptation. They call for policies providing equitable resources and support, underscoring the importance of inclusive climate governance that acknowledges the unique vulnerabilities and contributions of Rondônia’s agricultural sector. This research contributes to understanding how climate change reshapes rural Amazonian communities, arguing that ongoing deforestation and climatic changes threaten regional agricultural stability. It advocates for targeted policy interventions to provide technical assistance for sustainable farming and climate adaptation, alongside mechanisms to support fair market pricing. These measures are essential for enhancing the resilience and sustainability of local farming communities amidst climate change. 
    more » « less
  5. Cattle farming is a major source of global food production and livelihoods that is being impacted by climate change. However, despite numerous studies reporting local-scale heat impacts, quantifying the global risk of heat stress to cattle from climate change remains challenging. We conducted a global synthesis of documented heat stress for cattle using 164 records to identify temperature-humidity conditions associated with decreased production and increased mortality, then projected how future greenhouse gas emissions and land-use decisions will limit or exacerbate heat stress, and mapped this globally. The median threshold for the onset of negative impacts on cattle was a temperature-humidity index of 68.8 (95% C.I.: 67.3–70.7). Currently, almost 80% of cattle globally are exposed to conditions exceeding this threshold for at least 30 days a year. For global warming above 4°C, heat stress of over 180 days per year emerges in temperate regions, and year-round heat stress expands across all tropical regions by 2100. Limiting global warming to 2°C, limits expansion of 180 days of heat stress to sub-tropical regions. In all scenarios, severity of heat stress increases most in tropical regions, reducing global milk yields. Future land-use decisions are an important driver of risk. Under a low environmental protection scenario (SSP3-RCP7.0), the greatest expansion of cattle farming is projected for tropical regions (especially Amazon, Congo Basin, and India), where heat stress is projected to increase the most. This would expose over 500 million more cattle in these regions to severe heat risk by 2090 compared to 2010. A less resource-intensive and higher environmental protection scenario (SSP1-RCP2.6) reduces heat risk for cattle by at least 50% in Asia, 63% in South America, and 84% in Africa. These results highlight how societal choices that expand cattle production in tropical forest regions are unsustainable, both worsening climate change and exposing hundreds of millions more cattle to large increases in severe, year-round heat stress. 
    more » « less