Determining the age of the geomagnetic field is of paramount importance for understanding the evolution of the planet because the field shields the atmosphere from erosion by the solar wind. The absence or presence of the geomagnetic field also provides a unique gauge of early core conditions. Evidence for a geomagnetic field 4.2 billion-year (Gy) old, just a few hundred million years after the lunar-forming giant impact, has come from paleomagnetic analyses of zircons of the Jack Hills (Western Australia). Herein, we provide new paleomagnetic and electron microscope analyses that attest to the presence of a primary magnetic remanence carried by magnetite in these zircons and new geochemical data indicating that select Hadean zircons have escaped magnetic resetting since their formation. New paleointensity and Pb-Pb radiometric age data from additional zircons meeting robust selection criteria provide further evidence for the fidelity of the magnetic record and suggest a period of high geomagnetic field strength at 4.1 to 4.0 billion years ago (Ga) that may represent efficient convection related to chemical precipitation in Earth’s Hadean liquid iron core.
more »
« less
High-precision U-Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga
The Moon has had a complex history, with evidence of its primary crust formation obscured by later impacts. Existing U-Pb dates of >500 zircons from several locations on the lunar nearside reveal a pronounced age peak at 4.33 billion years (Ga), suggesting a major, potentially global magmatic event. However, the precision of existing geochronology is insufficient to determine whether this peak represents a brief event or a more protracted period of magmatism occurring over tens of millions of years. To improve the temporal resolution, we have analyzed Apollo 14, 15, and 17 zircons that were previously dated by ion microprobe at ~4.33 Ga using isotope dilution thermal ionization mass spectrometry. Concordant dates with sub-million-year uncertainty span ~4 million years from 4.338 to 4.334 Ga. Combined with Hf isotopic ratios and trace element concentrations, the data suggest zircon formation in a large impact melt sheet, possibly linked to the South Pole–Aitken basin.
more »
« less
- Award ID(s):
- 1735512
- PAR ID:
- 10546781
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 30
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A potential record of Earth’s magnetic field going back 4.2 billion years (Ga) ago is carried by magnetite inclusions in zircon grains from the Jack Hills. This magnetite may be secondary in nature, however, meaning that the magnetic record is much younger than the zircon crystallization age. Here, we use atom probe tomography to show that Pb-bearing nanoclusters in magnetite-bearing Jack Hills zircons formed during two discrete events at 3.4 and <2 Ga. The older population of clusters contains no detectable Fe, whereas roughly half of the younger population of clusters is Fe bearing. This result shows that the Fe required to form secondary magnetite entered the zircon sometime after 3.4 Ga and that remobilization of Pb and Fe during an annealing event occurred more than 1 Ga after deposition of the Jack Hills sediment at 3 Ga. The ability to date Fe mobility linked to secondary magnetite formation provides new possibilities to improve our knowledge of the Archean geodynamo.more » « less
-
Iizuka, Tsuyoshi (Ed.)Zircon trace element geochemistry has become an increasingly popular tool to track crustal evolution through time. This has been especially important in early-Earth settings where most of the crust has been lost, but in some fortuitous instances detrital zircons derived from that lost crust have been preserved in younger sediments. To study the formation and geochemical evolution of continental crust from the Hadean to the Paleoarchean, the 3.6 to 3.2 Ga Barberton Greenstone Belt in southern Africa is an excellent target due to its outstanding preservation and presence of detrital zircons that span almost a billion years. Here, we use trace elements, in combination with hafnium and oxygen isotopes, of 3.65 to 3.22 Ga detrital and tuffaceous zircons of the Moodies and Fig Tree groups and compare their geochemistry to previously studied 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed of the Onverwacht Group. The major detrital zircon age clusters in the former at 3.55 Ga, 3.46 Ga, and 3.26–3.23 Ga overlap with episodes of TTG emplacement and felsic volcanism in the Barberton area, suggesting a local provenance. In contrast, age clusters at 3.65 Ga and 3.29 Ga of the Moodies and Fig Tree groups as well as 4.2 to 3.3 Ga detrital zircons from the Green Sandstone Bed do not have known intrusive sources and were likely derived from outside the present-day Barberton belt. This indicates that more than half of the felsic igneous events in the detrital zircon record do not have a whole-rock representation that can be directly studied. The similar compositions and inferred crustal evolution histories recorded in zircons from the Fig Tree and Moodies groups, as well as from the Green Sandstone Bed, suggest that they were derived from connected terranes experiencing similar crustal processes diachronously. Together, they show three phases of felsic continent formation, reflecting different crustal processes: (1) long-lived protocrust formed in the Hadean from undepleted mantle sources. These zircons are vastly different from younger zircons and, hence, Barberton TTGs are not good analogues of Hadean crust formation. (2) At 3.8 Ga, onset of significant crustal growth though cyclic juvenile additions and hydrous melting, possibly within a volcanic plateau setting but an arc-like setting cannot be excluded based on this data. (3) Between 3.4 and 3.3 Ga, felsic crust is generated through a previously unrecognized episode of crustal growth by shallow melting of mafic, mantle-derived sources. This is immediately followed by the onset of crustal thickening through the transport of surface-altered, hydrated materials to deep crustal levels. Since there is geological evidence for extension and shortening at that time this may reflect the onset of horizontal movement. Whether this last geodynamic setting reflects modern-style plate tectonics or not, continent formation and the onset of plate tectonics in the Barberton area occurred through complex multi-stage processes spanning almost a billion years, most of which is only accessible through the detrital zircon record.more » « less
-
The Montana metasedimentary terrane in the northern Wyoming Province provides valuable insight into crustal formation and reworking processes along the cratonic margin and offers a unique opportunity to decipher the complex Neoarchean−Paleoproterozoic terrane assembly in southwestern Laurentia. We report new zircon U-Pb dates and Hf isotopes from seven metaigneous samples in the northwestern Montana metasedimentary terrane. The internal textures of zircon in this study are complex; some lack inherited cores and metamorphic overgrowths, while others exhibit core-rim relationships. Based on the cathodoluminescence (CL) features, we interpret these grains to be magmatic populations. These data demonstrate discrete igneous pulses at 2.7 Ga, 2.4 Ga, and 1.7 Ga, which indicate significant crustal formation intervals in the Montana metasedimentary terrane. Zircons at 2.7 Ga have positive εHf values (+2.4 to +0.9) that indicate a depleted mantle source. Most 2.4 Ga and 1.7 Ga samples have negative εHf values (−1.6 to −15.5), which indicate significant contributions from preexisting crust. Two 1.7 Ga samples, however, have near-chondritic εHf values (+0.4 to +0.3) that indicate larger juvenile contributions. The time-integrated Hf isotope trend suggests that the Paleoproterozoic zircons were produced from a mixture of older crust and juvenile mantle inputs. Additionally, the isotopic age fingerprint of the Montana metasedimentary terrane suggests that it differs from northern-bounding terranes. Viewed more broadly, the 2.7 Ga and 1.7 Ga age peaks that the Montana metasedimentary terrane shares with the global zircon age spectrum suggest that the drivers of these events in the Montana metasedimentary terrane were common throughout the Earth and may be associated with the assembly of supercontinents Kenorland and Nuna.more » « less
-
Plate tectonics is a fundamental factor in the sustained habitability of Earth, but its time of onset is unknown, with ages ranging from the Hadaean to Proterozoic eons1–3. Plate motion is a key diagnostic to distinguish between plate and stagnant-lid tectonics, but palaeomagnetic tests have been thwarted because the planet’s oldest extant rocks have been metamorphosed and/or deformed4. Herein, we report palaeointensity data from Hadaean-age to Mesoarchaean-age single detrital zircons bearing primary magnetite inclusions from the Barberton Greenstone Belt of South Africa5. These reveal a pattern of palaeointensities from the Eoarchaean (about 3.9 billion years ago (Ga)) to Mesoarchaean (about 3.3 Ga) eras that is nearly identical to that defined by primary magnetizations from the Jack Hills (JH; Western Australia)6,7, further demonstrating the recording fidelity of select detrital zircons. Moreover, palaeofield values are nearly constant between about 3.9 Ga and about 3.4 Ga. This indicates unvarying latitudes, an observation distinct from plate tectonics of the past 600 million years (Myr) but predicted by stagnant-lid convection. If life originated by the Eoarchaean8, and persisted to the occurrence of stromatolites half a billion years later9, it did so when Earth was in a stagnant-lid regime, without plate-tectonics-driven geochemical cycling.more » « less
An official website of the United States government

