skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrological Impact of Remotely Sensed Interannual Vegetation Variability in the Upper Colorado River Basin
Abstract Vegetation plays a crucial role in atmosphere‐land water and energy exchanges, global carbon cycle and basin water conservation. Land Surface Models (LSMs) typically represent vegetation characteristics by monthly climatological indices. However, static vegetation parameterization does not fully capture time‐varying vegetation characteristics, such as responses to climatic fluctuations, long‐term trends, and interannual variability. It remains unclear how the interaction between vegetation and climate variability propagates into hydrologic fluxes and water resources. Multi‐source satellite data sets may introduce uncertainties and require extensive time for analysis. This study developes a deep learning surrogate for a widely used LSM (i.e., Noah) as a rapid diagnosic tool. The calibrated surrogate quantifies the impacts of time‐varying vegetation characteristics from multiple remotely sensed GVF products on the magnitude, seasonality, and biotic and abiotic components of hydrologic fluxes. Using the Upper Colorado River Basin (UCRB) as a test case, we found that time‐varying vegetation provides more buffering effect against climate fluctuation than the static vegetation configuration, leading to reduced variability in the abiotic evaporation components (e.g., soil evaporation). In addition, time‐varying vegetation from multi‐source remote sensing products consistently predicts smaller biotic evaporation components (e.g., transpiration), leading to increased water yield in the UCRB (about 14%) compared to the static vegetation scheme. We also highlight the interaction between dynamic vegetation parameterization and static parameterization (e.g., soil) during calibration. Parameter recalibration and a re‐evaluation of certain model assumptions may be required for assessing climate change impacts on vegetation and basin‐wide water resources.  more » « less
Award ID(s):
2330525 2239621
PAR ID:
10546796
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change and unsustainable land management practices have resulted in extensive soil degradation, including alteration of soil structure (i.e., aggregate and pore size distributions), loss of soil organic carbon, and reduction of water and nutrient holding capacities. Although soil structure, hydrologic processes, and biogeochemical fluxes are tightly linked, their interaction is often unaccounted for in current ecohydrological, hydrological and terrestrial biosphere models. For more holistic predictions of soil hydrological and biogeochemical cycles, models need to incorporate soil structure and macroporosity dynamics, whether in a natural or agricultural ecosystem. Here, we present a theoretical framework that couples soil hydrologic processes and soil microbial activity to soil organic carbon dynamics through the dynamics of soil structure. In particular, we link the Millennial model for soil carbon dynamics, which explicitly models the formation and breakdown of soil aggregates, to a recent parameterization of the soil water retention and hydraulic conductivity curves and to solute and O2diffusivities to soil microsites based on soil macroporosity. To illustrate the significance of incorporating the dynamics of soil structure, we apply the framework to a case study in which soil and vegetation recover over time from agricultural practices. The new framework enables more holistic predictions of the effects of climate change and land management practices on coupled soil hydrological and biogeochemical cycles. 
    more » « less
  2. Abstract The land surface hydrology of the North American Great Lakes region regulates ecosystem water availability, lake levels, vegetation dynamics, and agricultural practices. In this study, we analyze the Great Lakes terrestrial water budget using the Noah‐MP land surface model to characterize the catchment hydrological regimes and identify the dominant quantities contributing to the variability in the land surface hydrology. We show that the Great Lakes domain is not hydrologically uniform and strong spatiotemporal differences exist in the regulators of the hydrological budget at daily, monthly, and annual timescales. Subseasonally, precipitation and soil moisture explain nearly all the terrestrial water budget variability in the southern basins, while the northern latitudes are snow‐dominated regimes. Seasonal assessments reveal greater differences among the basins. Precipitation, evaporation, and runoff are the dominant sources of variability at lower latitudes, while at higher latitudes, terrestrial water storage in the form of ground snowpack and soil moisture has the leading role. Differences in land cover categorizations, for example, croplands, forests, or urban zones, further induce spatial differences in the hydrological characteristics. This quantification of variability in the terrestrial water cycle embedded at different temporal scales is important to assess the impacts of changes in climate and land cover on catchment sensitivities across the diverse hydroclimate of the Great Lakes region. 
    more » « less
  3. In the semiarid, water-limited deserts of the Southwest United States, soil moisture is a crucial factor influencing atmospheric, hydrologic, and ecological processes. These dynamics are driven by infrequent yet significant precipitation events that redistribute moisture and establish hydrologic connectivity across the landscape. The Chihuahuan Desert, particularly within its endorheic basins, exemplifies these large-scale interactions where a complex balance of hydrological fluxes is maintained within a closed system. These basins receive most of their precipitation in upland regions, from which surface runoff can lead to downstream connectivity. This connectivity is influenced by the local water balance, including interactions among precipitation, leakage, and evapotranspiration, which are essential for understanding soil moisture variability. Additionally, soil moisture is affected by soil profile characteristics, vegetation, and atmospheric conditions. Field-scale methods like Cosmic-Ray Neutron Sensing (CRNS) are more appropriate than point-scale in situ sensors for quantifying hydrologic connectivity between upland and downstream regions, as CRNS reliably captures soil moisture temporal dynamics over several hectares. This study examines these dynamics within the endorheic Jornada Basin of the Chihuahuan Desert, focusing on two contrasting sites: an Upland Watershed (UW) on a piedmont slope and a Downstream Playa (DP) in a valley bottom. Using CRNS and complementary water balance instrumentation, I compared soil moisture dynamics at these two sites from July 2022 to February 2024. My analysis centered on a significant precipitation event early in the study period that generated surface runoff and playa inundation, followed by an extended dry period. Although temporal variations in leakage and evapotranspiration are similar at both sites, their rates differ significantly. The UW experienced a higher drying rate, necessitating greater plant water uptake from the subsurface. This led to an increased upward leakage to sustain vegetation, resulting in a leakage value of -205 mm, indicating vertical plant water uptake. Conversely, at the DP, the inundation event was formed by 228 mm of surface runoff, supplementing water inputs from precipitation. This additional water reduced the need for upward soil water movement to sustain plant water uptake, resulting in a leakage value of -97 mm. These findings enhance our understanding of hydrologic fluxes within endorheic basins and improve the applicability of hydrological models and the downscaling of remotely sensed soil moisture products. 
    more » « less
  4. Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result inwidespread tree mortality, transforming forest structure within watersheds.While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak water yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance. 
    more » « less
  5. The atmospheric water supply and demand dynamics determine a region’s potential water resources. The hydrologic ratios, such as, aridity index, evaporation ratio and runoff coefficients are useful indicators to quantify the atmospheric water dynamics at watershed to regional scales. In this study, we developed a modeling framework using a machine learning approach to predict hydrologic ratios for watersheds located in contiguous United States (CONUS) by utilizing a set of climate, soil, vegetation, and topographic variables. Overall, the proposed modeling framework is able to simulate the hydrologic ratios at watershed scale with a considerable accuracy. The concept of non-parametric elasticity was applied to study the potential influence of the estimated hydrologic ratios on various drought characteristics (resilience, vulnerability, and exposure) for river basins located in CONUS. Spatial sensitivity of drought indicators to hydrologic ratios suggests that an increase in hydrologic ratios may result in augmentation of magnitude of drought indicators in majority of the river basins. Aridity index seems to have higher influence on drought characteristics in comparison to other hydrologic ratios. It was observed that the machine learning approach based on random forests algorithm can efficiently estimate the spatial distribution of hydrologic ratios provided sufficient data is available. In addition to that, the non-parametric based elasticity approach can identify the potential influence of hydrologic ratios on spatial drought characteristics. 
    more » « less