Although many fairness criteria have been proposed to ensure that machine learning algorithms do not exhibit or amplify our existing social biases, these algorithms are trained on datasets that can themselves be statistically biased. In this paper, we investigate the robustness of existing (demographic) fairness criteria when the algorithm is trained on biased data. We consider two forms of dataset bias: errors by prior decision makers in the labeling process, and errors in the measurement of the features of disadvantaged individuals. We analytically show that some constraints (such as Demographic Parity) can remain robust when facing certain statistical biases, while others (such as Equalized Odds) are significantly violated if trained on biased data. We provide numerical experiments based on three real-world datasets (the FICO, Adult, and German credit score datasets) supporting our analytical findings. While fairness criteria are primarily chosen under normative considerations in practice, our results show that naively applying a fairness constraint can lead to not only a loss in utility for the decision maker, but more severe unfairness when data bias exists. Thus, understanding how fairness criteria react to different forms of data bias presents a critical guideline for choosing among existing fairness criteria, or for proposing new criteria, when available datasets may be biased.
more »
« less
Long-Term Impacts of Fair Machine Learning
Machine learning models developed from real-world data can inherit potential, preexisting bias in the dataset. When these models are used to inform decisions involving human beings, fairness concerns inevitably arise. Imposing certain fairness constraints in the training of models can be effective only if appropriate criteria are applied. However, a fairness criterion can be defined/assessed only when the interaction between the decisions and the underlying population is well understood. We introduce two feedback models describing how people react when receiving machine-aided decisions and illustrate that some commonly used fairness criteria can end with undesirable consequences while reinforcing discrimination.
more »
« less
- Award ID(s):
- 1646019
- PAR ID:
- 10547003
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Ergonomics in Design: The Quarterly of Human Factors Applications
- Volume:
- 28
- Issue:
- 3
- ISSN:
- 1064-8046
- Format(s):
- Medium: X Size: p. 7-11
- Size(s):
- p. 7-11
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Achieving fairness in learning models is currently an imperative task in machine learning. Meanwhile, recent research showed that fairness should be studied from the causal perspective, and proposed a number of fairness criteria based on Pearl's causal modeling framework. In this paper, we investigate the problem of building causal fairness-aware generative adversarial networks (CFGAN), which can learn a close distribution from a given dataset, while also ensuring various causal fairness criteria based on a given causal graph. CFGAN adopts two generators, whose structures are purposefully designed to reflect the structures of causal graph and interventional graph. Therefore, the two generators can respectively simulate the underlying causal model that generates the real data, as well as the causal model after the intervention. On the other hand, two discriminators are used for producing a close-to-real distribution, as well as for achieving various fairness criteria based on causal quantities simulated by generators. Experiments on a real-world dataset show that CFGAN can generate high quality fair data.more » « less
-
As machine learning (ML) models are increasingly used in social domains to make consequential decisions about humans, they often have the power to reshape data distributions. Humans, as strategic agents, continuously adapt their behaviors in response to the learning system. As populations change dynamically, ML systems may need frequent updates to ensure high performance. However, acquiring high-quality human-annotated samples can be highly challenging and even infeasible in social domains. A common practice to address this issue is using the model itself to annotate unlabeled data samples. This paper investigates the long-term impacts when ML models are retrained with model-annotated samples when they incorporate human strategic responses. We first formalize the interactions between strategic agents and the model and then analyze how they evolve under such dynamic interactions. We find that agents are increasingly likely to receive positive decisions as the model gets retrained, whereas the proportion of agents with positive labels may decrease over time. We thus propose a refined retraining process to stabilize the dynamics. Last, we examine how algorithmic fairness can be affected by these retraining processes and find that enforcing common fairness constraints at every round may not benefit the disadvantaged group in the long run. Experiments on (semi-)synthetic and real data validate the theoretical findings.more » « less
-
Recent years have witnessed increasing concerns towards unfair decisions made by machine learning algorithms. To improve fairness in model decisions, various fairness notions have been proposed and many fairness-aware methods are developed. However, most of existing definitions and methods focus only on single-label classification. Fairness for multi-label classification, where each instance is associated with more than one labels, is still yet to establish. To fill this gap, we study fairness-aware multi-label classification in this paper. We start by extending Demographic Parity (DP) and Equalized Opportunity (EOp), two popular fairness notions, to multi-label classification scenarios. Through a systematic study, we show that on multi-label data, because of unevenly distributed labels, EOp usually fails to construct a reliable estimate on labels with few instances. We then propose a new framework named Similarity s-induced Fairness (sγ -SimFair). This new framework utilizes data that have similar labels when estimating fairness on a particular label group for better stability, and can unify DP and EOp. Theoretical analysis and experimental results on real-world datasets together demonstrate the advantage of sγ -SimFair over existing methods on multi-label classification tasks.more » « less
-
The “impossibility theorem” — which is considered foundational in algorithmic fairness literature — asserts that there must be trade-offs between common notions of fairness and performance when fitting statistical models, except in two special cases: when the prevalence of the outcome being predicted is equal across groups, or when a perfectly accurate predictor is used. However, theory does not always translate to practice. In this work, we challenge the implications of the impossibility theorem in practical settings. First, we show analytically that, by slightly relaxing the impossibility theorem (to accommodate a practitioner’s perspective of fairness), it becomes possible to identify abundant sets of models that satisfy seemingly incompatible fairness constraints. Second, we demonstrate the existence of these models through extensive experiments on five real-world datasets. We conclude by offering tools and guidance for practitioners to understand when — and to what degree — fairness along multiple criteria can be achieved. This work has an important implication for the community: achieving fairness along multiple metrics for multiple groups (and their intersections) is much more possible than was previously believed.more » « less
An official website of the United States government
