Cultivated peanut ( Arachis hypogaea ) is one of the most widely grown food legumes in the world, being valued for its high protein and unsaturated oil contents. Drought stress is one of the major constraints that limit peanut production. This study’s objective was to identify the drought-responsive genes preferentially expressed under drought stress in different peanut genotypes. To accomplish this, four genotypes (drought tolerant: C76-16 and 587; drought susceptible: Tifrunner and 506) subjected to drought stress in a rainout shelter experiment were examined. Transcriptome sequencing analysis identified that all four genotypes shared a total of 2,457 differentially expressed genes (DEGs). A total of 139 enriched gene ontology terms consisting of 86 biological processes and 53 molecular functions, with defense response, reproductive process, and signaling pathways, were significantly enriched in the common DEGs. In addition, 3,576 DEGs were identified only in drought-tolerant lines in which a total of 74 gene ontology terms were identified, including 55 biological processes and 19 molecular functions, mainly related to protein modification process, pollination, and metabolic process. These terms were also found in shared genes in four genotypes, indicating that tolerant lines adjusted more related genes to respond to drought. Forty-three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified, and the most enriched pathways were those processes involved in metabolic pathways, biosynthesis of secondary metabolites, plant circadian rhythm, phenylpropanoid biosynthesis, and starch and sucrose metabolism. This research expands our current understanding of the mechanisms that facilitate peanut drought tolerance and shed light on breeding advanced peanut lines to combat drought stress. 
                        more » 
                        « less   
                    
                            
                            Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense
                        
                    
    
            Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato,Solanum chilense,naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought‐responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought‐responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re‐wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2119820
- PAR ID:
- 10547722
- Publisher / Repository:
- Molecular Ecology
- Date Published:
- Journal Name:
- Molecular Ecology
- ISSN:
- 0962-1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract PremiseThe origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we usedCakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. MethodsUsing a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response inC. maritimaand identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. ResultsCakile maritimais tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool inC. maritimaand likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved inC. maritimaabiotic stress tolerance. ConclusionsThese findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.more » « less
- 
            Hernandez, R (Ed.)Abstract Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation for gene expression will require distinguishing between divergence due to selection and divergence due to genetic drift. Here, we adapt a QST−FST framework to detect local adaptation for transcriptome-wide gene expression levels in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpression clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show that genes involved in stress response show enrichment for selection. Due to its history of intense selective breeding and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the genes and processes important for in local adaptation of maize.more » « less
- 
            Cotton is an important natural fiber crop. The RF2 gene family is a member of the bZIP transcription factor superfamily, which plays an important role in plant resistance to environmental stresses. In this paper, the RF2 gene family of four cotton species was analyzed genome-wide, and the key gene RF2-32 was cloned for functional verification. A total of 113 RF2 genes were identified in the four cotton species, and the RF2 family was relatively conserved during the evolution of cotton. Chromosome mapping and collinear analysis indicated that fragment replication was the main expansion mode of RF2 gene family during evolution. Cis-element analysis showed that there were many elements related to light response, hormone response and abiotic stress response in the promoters of RF2 genes. The transcriptome and qRT-PCR analysis of RF2 family genes in upland cotton showed that RF2 family genes responded to salt stress and drought stress. GhRF2-32 protein was localized in the cell nucleus. Silencing the GhRF2-32 gene showed less leaf wilting and increased total antioxidant capacity under drought and salt stress, decreased malondialdehyde content and increased drought and salt tolerance. This study revealed the evolutionary and functional diversity of the RF2 gene family, which laid a foundation for the further study of stress-resistant genes in cotton.more » « less
- 
            Transcription factors (TFs) play a central role in regulating molecular level responses of plants to external stresses such as water limiting conditions, but identification of such TFs in the genome remains a challenge. Here, we describe a network-based supervised machine learning framework that accurately predicts and ranks all TFs in the genome according to their potential association with drought tolerance. We show that top ranked regulators fall mainly into two ‘age’ groups; genes that appeared first in land plants and genes that emerged later in the Oryza clade. TFs predicted to be high in the ranking belong to specific gene families, have relatively simple intron/exon and protein structures, and functionally converge to regulate primary and secondary metabolism pathways. Repeated trials of nested cross-validation tests showed that models trained only on regulatory network patterns, inferred from large transcriptome datasets, outperform models trained on heterogenous genomic features in the prediction of known drought response regulators. A new R/Shiny based web application, called the DroughtApp, provides a primer for generation of new testable hypotheses related to regulation of drought stress response. Furthermore, to test the system we experimentally validated predictions on the functional role of the rice transcription factor OsbHLH148, using RNA sequencing of knockout mutants in response to drought stress and protein-DNA interaction assays. Our study exemplifies the integration of domain knowledge for prioritization of regulatory genes in biological pathways of well-studied agricultural traits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    