skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Statistical Delay, Error-Rate, and Joint-Delay/Error-Rate QoS-Exponents Over M-MIMO Mobile Wireless Networks Using FBC
Award ID(s):
2008975
PAR ID:
10547803
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-7554-9
Page Range / eLocation ID:
2332 to 2337
Format(s):
Medium: X
Location:
Taipei, Taiwan
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Biological research often involves testing a growing number of null hypotheses as new data are accumulated over time. We study the problem of online control of the familywise error rate, that is testing an a priori unbounded sequence of hypotheses ( p-values) one by one over time without knowing the future, such that with high probability there are no false discoveries in the entire sequence. This paper unifies algorithmic concepts developed for offline (single batch) familywise error rate control and online false discovery rate control to develop novel online familywise error rate control methods. Though many offline familywise error rate methods (e.g., Bonferroni, fallback procedures and Sidak’s method) can trivially be extended to the online setting, our main contribution is the design of new, powerful, adaptive online algorithms that control the familywise error rate when the p-values are independent or locally dependent in time. Our numerical experiments demonstrate substantial gains in power, that are also formally proved in an idealized Gaussian sequence model. A promising application to the International Mouse Phenotyping Consortium is described. 
    more » « less
  2. We propose a method for multiple hypothesis testing with familywise error rate (FWER) control, called the i-FWER test. Most testing methods are predefined algorithms that do not allow modifications after observing the data. However, in practice, analysts tend to choose a promising algorithm after observing the data; unfortunately, this violates the validity of the conclusion. The i-FWER test allows much flexibility: a human (or a computer program acting on the human’s behalf) may adaptively guide the algorithm in a data-dependent manner. We prove that our test controls FWER if the analysts adhere to a particular protocol of masking and unmasking. We demonstrate via numerical experiments the power of our test under structured non-nulls, and then explore new forms of masking. 
    more » « less