skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inter-regional correlation estimators for functional magnetic resonance imaging
Functional magnetic resonance imaging (fMRI) functional connectivity between brain regions is often computed using parcellations defined by functional or structural atlases. Typically, some kind of voxel averaging is performed to obtain a single temporal correlation estimate per region pair. However, several estimators can be defined for this task, with various assumptions and degrees of robustness to local noise, global noise, and region size. In this paper, we systematically present and study the properties of 9 different functional connectivity estimators taking into account the spatial structure of fMRI data, based on a simple fMRI data spatial model. These include 3 existing estimators and 6 novel estimators. We demonstrate the empirical properties of the estimators using synthetic, animal, and human data, in terms of graph structure, repeatability and reproducibility, discriminability, dependence on region size, as well as local and global noise robustness. We prove analytically the link between regional intra-correlation and inter-region correlation, and show that the choice of estimator has a strong influence on inter-correlation values. Some estimators, including the commonly used correlation of averages (ca), are positively biased, and have more dependence to region size and intra-correlation than robust alternatives, resulting in spatially-dependent bias. We define the new local correlation of averages estimator with better theoretical guarantees, lower bias, significantly lower dependence on region size (Spearman correlation 0.40 vs 0.55, paired t-test T=27.2, 𝑝 = 1.1𝑒−47), at negligible cost to discriminative power, compared to the ca estimator. The difference in connectivity pattern between the estimators is not distributed uniformly throughout the brain, but rather shows a clear ventral-dorsal gradient, suggesting that region size and intra-correlation plays an important role in shaping functional networks defined using the ca estimator, and leading to non- trivial differences in their connectivity structure. We provide an open source R package and equivalent Python implementation to facilitate the use of the new estimators, together with preprocessed rat time-series.  more » « less
Award ID(s):
2135859
PAR ID:
10547935
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
NeuroImage
Volume:
282
Issue:
C
ISSN:
1053-8119
Page Range / eLocation ID:
120388
Subject(s) / Keyword(s):
Functional connectivity Correlation Aggregated data Familial correlations Serial correlations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel non-parametric estimator of the correlation between grouped measurements of a quantity is proposed in the presence of noise. The main motivation is functional brain network construction from fMRI data, where brain regions correspond to groups of spatial units, and correlation between region pairs defines the network. The challenge resides in the fact that both noise and intra-regional correlation lead to inconsistent inter-regional correlation estimation using classical approaches. While some existing methods handle either one of these issues, no nonparametric approaches tackle both simultaneously. To address this problem, a trade-off between two procedures is proposed: correlating regional averages, which is not robust to intra-regional correlation; and averaging pairwise inter-regional correlations, which is not robust to noise. To that end, the data is projected onto a space where Euclidean distance is used as a proxy for sample correlation. Hierarchical clustering is then leveraged to gather together highly correlated variables within each region prior to inter-regional correlation estimation. The convergence of the proposed estimator is analyzed, and the proposed approach is empirically shown to surpass several other popular methods in terms of quality. Illustrations on real-world datasets that further demonstrate its effectiveness are provided. 
    more » « less
  2. Data produced by resting-state functional Magnetic Resonance Imaging are widely used to infer brain functional connectivity networks. Such networks correlate neural signals to connect brain regions, which consist in groups of dependent voxels. Previous work has focused on aggregating data across voxels within predefined regions. However, the presence of within-region correlations has noticeable impacts on inter-regional correlation detection, and thus edge identification. To alleviate them, we propose to leverage techniques from the large-scale correlation screening literature, and derive simple and practical characterizations of the mean number of correlation discoveries that flexibly incorporate intra-regional dependence structures. A connectivity network inference framework is then presented. First, inter-regional correlation distributions are estimated. Then, correlation thresholds that can be tailored to one’s application are constructed for each edge. Finally, the proposed framework is implemented on synthetic and real-world datasets. This novel approach for handling arbitrary intra-regional correlation is shown to limit false positives while improving true positive rates. 
    more » « less
  3. Abstract Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS. 
    more » « less
  4. Studying dynamic-functional connectivity (DFC) using fMRI data of the brain gives much richer information to neuroscientists than studying the brain as a static entity. Mining of dynamic connectivity graphs from these brain studies can be used to classify diseased versus healthy brains. However, constructing and mining dynamic-functional connectivity graphs of the brain can be time consuming due to size of fMRI data. In this paper, we propose a highly scalable GPU-based parallel algorithm called GPU-DFC for computing dynamic-functional connectivity of fMRI data both at region and voxel level. Our algorithm exploits sparsification of correlation matrix and stores them in CSR format. Further reduction in the correlation matrix is achieved by parallel decomposition techniques. Our GPU-DFC algorithm achieves 2 times speed-up for computing dynamic correlations compared to state-of-the-art GPU-based techniques and more than 40 times compared to a sequential CPU version. In terms of storage, our proposed matrix decomposition technique reduces the size of correlation matrices more than 100 times. Reconstructed values from decomposed matrices show comparable results as compared to the correlations with original data. The implemented code is available as GPL license on GitHub portal of our lab (https://github.com/pcdslab/GPU-DFC). 
    more » « less
  5. Spatial–temporal data arise frequently in biomedical, environmental, political and social science studies. Capturing dynamic changes of time-varying correlation structure is scientifically important in spatio-temporal data analysis. We approximate the time-varying empirical estimator of the spatial correlation matrix by groups of selected basis matrices representing substructures of the correlation matrix. After projecting the correlation structure matrix onto a space spanned by basis matrices, we also incorporate varying-coefficient model selection and estimation for signals associated with relevant basis matrices. The unique feature of the proposed method is that signals at local regions corresponding with time can be identified through the proposed penalized objective function. Theoretically, we show model selection consistency and the oracle property in detecting local signals for the varying-coefficient estimators. The proposed method is illustrated through simulation studies and brain fMRI data. 
    more » « less