skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Model assessment for Design of Future Manufacturing systems using Digital Twins: A case study on a single-scale pharmaceutical manufacturing unit
Designing a digital twin will be crucial in developing automation-based future manufacturing systems. The design of digital twins involves data-driven modelling of individual manufacturing units and interactions between the various entities. The goals of future manufacturing units such as zero waste at the plant scale can be formulated as a model-based optimal control problem by identifying the necessary state, control inputs, and manipulated variables. The fundamental assumption of any model-based control scheme is the availability of a reasonable model, and hence, assessing the goodness of the model in terms of stability and sensitivity around the optimal parameter value becomes imperative. This work analyses the data-driven model of an acetaminophen production plant obtained from SINDy, a nonlinear system identification algorithm using sparse identification techniques. Initially, we linearize the system around optimal parameter values and use local stability analysis to assess the stability of the identified model. Further, we use what is known as a conditional sloppiness analysis to identify the sensitivity of the parameters around the optimal parameter values to non-infinitesimal perturbations. The conditional sloppiness analysis will reveal the geometry of the parameter space around the optimal parameter values. This analysis eventually gives valuable information on the robustness of the predictions to the changes in the parameter values. We also identify sensitive and insensitive parameter direction. Finally, we show using numerical simulations that the linearized SINDy model is not good enough for control system design. The pole-placement controller is not robust, and with high probability, the control system becomes unstable to very minimum parameter uncertainty in the gain matrix.  more » « less
Award ID(s):
2229250
PAR ID:
10548260
Author(s) / Creator(s):
;
Publisher / Repository:
PSE Press
Date Published:
Page Range / eLocation ID:
778 to 782
Format(s):
Medium: X
Location:
Breckenridge, Colorado, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Dynamical equations form the basis of design for manufacturing processes and control systems; however, identifying governing equations using a mechanistic approach is tedious. Recently, Machine learning (ML) has shown promise to identify the governing dynamical equations for physical systems faster. This possibility of rapid identification of governing equations provides an exciting opportunity for advancing dynamical systems modeling. However, applicability of the ML approach in identifying governing mechanisms for the dynamics of complex systems relevant to manufacturing has not been tested. We test and compare the efficacy of two white-box ML approaches (SINDy and SymReg) for predicting dynamics and structure of dynamical equations for overall dynamics in a distillation column. Results demonstrate that a combination of ML approaches should be used to identify a full range of equations. In terms of physical law, few terms were interpretable as related to Fick’s law of diffusion and Henry’s law in SINDy, whereas SymReg identified energy balance as driving dynamics. 
    more » « less
  2. Additive manufacturing (AM) has impacted the manufacturing of complex three-dimensional objects in multiple materials for a wide array of applications. However, additive manufacturing, as an upcoming field, lacks automated and specific design rules for different AM processes. Moreover, the selection of specific AM processes for different geometries requires expert knowledge, which is difficult to replicate. An automated and data-driven system is needed that can capture the AM expert knowledge base and apply it to 3D-printed parts to avoid manufacturability issues. This research aims to develop a data-driven system for AM process selection within the design for additive manufacturing (DFAM) framework for Industry 4.0. A Genetic and Evolutionary Feature Weighting technique was optimized using 3D CAD data as an input to identify the optimal AM technique based on several requirements and constraints. A two-stage model was developed wherein the stage 1 model displayed average accuracies of 70% and the stage 2 model showed higher average accuracies of up to 97.33% based on quantitative feature labeling and augmentation of the datasets. The steady-state genetic algorithm (SSGA) was determined to be the most effective algorithm after benchmarking against estimation of distribution algorithm (EDA) and particle swarm optimization (PSO) algorithms, respectively. The output of this system leads to the identification of optimal AM processes for manufacturing 3D objects. This paper presents an automated design for an additive manufacturing system that is accurate and can be extended to other 3D-printing processes. 
    more » « less
  3. This paper presents four data-driven system models for a magnetically controlled swimmer. The models were derived directly from experimental data, and the accuracy of the models was experimentally demonstrated. Our previous study successfully implemented two non-model-based control algorithms for 3D path-following using PID and model reference adaptive controller (MRAC). This paper focuses on system identification using only experimental data and a model-based control strategy. Four system models were derived: (1) a physical estimation model, (2, 3) Sparse Identification of Nonlinear Dynamics (SINDY), linear system and nonlinear system, and (4) multilayer perceptron (MLP). All four system models were implemented as an estimator of a multi-step Kalman filter. The maximum required sensing interval was increased from 180 ms to 420 ms and the respective tracking error decreased from 9 mm to 4.6 mm. Finally, a Model Predictive Controller (MPC) implementing the linear SINDY model was tested for 3D path-following and shown to be computationally efficient and offers performances comparable to other control methods. 
    more » « less
  4. The presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust design result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control. 
    more » « less
  5. The development of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) has influenced Cyber-Physical Manufacturing Systems (CPMS). Collaborative manufacturing among organizations with geographically distributed operations using Nanomanufacturing (NM) requires integrated networking for enhanced productivity. The present research provides a unique cyber nanomanufacturing framework by combining digital design with various artificial neural networks (ANN) approaches to predict the optimal nano/micro-manufacturing process. It enables the visualization tool for real-time allocation of nano/micro-manufacturing resources to simulate machine availability for five types of NM processes in real-time for a dynamic machine identification system. This research establishes a foundation for a smart agent system with predictive capabilities for cyber nanomanufacturing in real-time. 
    more » « less