skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A user-inspired mobility experience of the future: a qualitative investigation
Wheelchair users (WCUs) face additional challenges than non-WCU to multi-tasking (i.e. open doors, cook, use a cell-phone) while navigating their environments. While assistive devices have attempted to provide WCUs with mobility solutions that enable multi-tasking capabilities, current devices have been developed without the input of end-users and have proven to be non-usable. More balanced approaches that integrate the end-users’ voices may improve current assistive technology usability trends. This study sought to empathically understand the lived experience of WCUs, their needs towards a mobility device, and their perceptions towards hands-free mobility. Full-time WCUs and care providers participated in semi-structured interviews examining wheelchair use and perceptions towards current and future mobility devices. Thematic analysis was used to analyze interview data. 9 WCUs (aged 32.1 ± 7.0 years; wheelchair experience 17.9 ± 11.6 years) and five care providers (years caring for WCU 3.75 ± 0.96 years) participated in the study. The most common disability type was spinal cord injury (WCUs: n = 3; care providers: n = 3). Qualitative analysis revealed four key themes: (1) Current wheelchair usage, (2) WCU and care provider perspectives, (3) Future wheelchair, and (4) Hands-free wheelchair. Accordingly, participants desire bespoke, light-weight mobility devices that can through tight spaces, access uneven terrain, and free the hands during navigation. This study provides meaningful insight into the needs of WCUs and care providers that assistive technology innovators can use to develop more usable assistive technologies. Amongst study participants, the concept of a hands-free mobility device appears to be usable and desirable.  more » « less
Award ID(s):
2024905
PAR ID:
10548363
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Disability and Rehabilitation: Assistive Technology
ISSN:
1748-3107
Page Range / eLocation ID:
1 to 10
Subject(s) / Keyword(s):
User-centered design, hands-free mobility, bespoke, wheelchair, assistive technology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel wheelchair called PURE ( Personalized Unique Rolling Experience) that uses hands hands-free (HF) torso leanlean-to -steer control has been developed for manual wheelchair users (mWCUs). PURE addresses limitations of current wheelchairs, such as the in ability to use both hands for life experiences instead of propulsion. PURE uses a ball ball-based robot drivetrain to offer a compactcompact, selfself- balancing , omnidirectional mobile device. A custom sensor system convertconverts rider torso motions into direction and speed commands to control PURE, which is especially useful if a rider has minimal torso range of motion. We explored whether PURE’s HF control performed as well as a traditional joystick (JS) human human- robot interface and mWCUsmWCUs, performed as well as able able-bodied users (ABUs). 10 mWCUs and 10 ABUs were trained and tested to drive PURE through courses replicating indoor settingssettings. Each participant adjusted ride sensitivity settings for both HF and JS control . Repeated Repeated-measures MANOVA tests suggested that the number of collisions collisions, completion time time, NASA TLX scores except physical demand , and index of performance performances were similar for HF and JS control and between mWCUs and ABUs for all sections. Th is suggestsuggests that PURE is effective for controlling this new omnidirectional wheelchair by only using torso motion thus leaving both hands to be used for other tasks during propulsion propulsion. 
    more » « less
  2. Background Over the past 2 decades, various desktop and mobile telemedicine systems have been developed to support communication and care coordination among distributed medical teams. However, in the hands-busy care environment, such technologies could become cumbersome because they require medical professionals to manually operate them. Smart glasses have been gaining momentum because of their advantages in enabling hands-free operation and see-what-I-see video-based consultation. Previous research has tested this novel technology in different health care settings. Objective The aim of this study was to review how smart glasses were designed, used, and evaluated as a telemedicine tool to support distributed care coordination and communication, as well as highlight the potential benefits and limitations regarding medical professionals’ use of smart glasses in practice. Methods We conducted a literature search in 6 databases that cover research within both health care and computer science domains. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology to review articles. A total of 5865 articles were retrieved and screened by 3 researchers, with 21 (0.36%) articles included for in-depth analysis. Results All of the reviewed articles (21/21, 100%) used off-the-shelf smart glass device and videoconferencing software, which had a high level of technology readiness for real-world use and deployment in care settings. The common system features used and evaluated in these studies included video and audio streaming, annotation, augmented reality, and hands-free interactions. These studies focused on evaluating the technical feasibility, effectiveness, and user experience of smart glasses. Although the smart glass technology has demonstrated numerous benefits and high levels of user acceptance, the reviewed studies noted a variety of barriers to successful adoption of this novel technology in actual care settings, including technical limitations, human factors and ergonomics, privacy and security issues, and organizational challenges. Conclusions User-centered system design, improved hardware performance, and software reliability are needed to realize the potential of smart glasses. More research is needed to examine and evaluate medical professionals’ needs, preferences, and perceptions, as well as elucidate how smart glasses affect the clinical workflow in complex care environments. Our findings inform the design, implementation, and evaluation of smart glasses that will improve organizational and patient outcomes. 
    more » « less
  3. Without finger function, people with C5-7 spinal cord injury (SCI) regularly utilize wrist extension to passively close the fingers and thumb together for grasping. Wearable assistive grasping devices often focus on this familiar wrist-driven technique to provide additional support and amplify grasp force. Despite recent research advances in modernizing these tools, people with SCI often abandon such wearable assistive devices in the long term. We suspect that the wrist constraints imposed by such devices generate undesirable reach and grasp kinematics. Here we show that using continuous robotic motor assistance to give users more adaptability in their wrist posture prior to wrist-driven grasping reduces task difficulty and perceived exertion. Our results demonstrate that more free wrist mobility allows users to select comfortable and natural postures depending on task needs, which improves the versatility of the assistive grasping device for easier use across different hand poses in the arm’s workspace. This behavior holds the potential to improve ease of use and desirability of future device designs through new modes of combining both body-power and robotic automation. 
    more » « less
  4. Abstract Many communities struggle to provide safe, accessible, and reliable transportation services for older adults due to high demand, rising costs, driver shortages, and other evolving challenges. Innovative transportation solutions are needed to support the current and future populations of older adults. Low-speed, shared-use, driverless shuttles present an exciting development in automated vehicle (AV) technology with potential to meet mobility needs of older adults in their community. Understanding older adults’ perceptions about and willingness to consider using these emerging modes of transportation is vital to realizing the full potential of these technologies. This presentation summarizes an in-person study conducted with 12 older (average: 66 +/- 4 years of age, range: 60 to 80 years) and 10 younger (average: 44 +/- 11 years) adults that evaluated a stationary, proof-of-concept shared-use AV retrofitted with accessibility features. We will present findings on perceptions regarding accessibility, safety, and willingness to use driverless AVs along with human factors design recommendations. While questionnaire-based studies have been the dominant approach to understanding older adults’ perceptions about shared-use AVs, in-person evaluations even with prototype AVs as described here, provide opportunities to identify goals, needs and preferences of older adults concerning usability and safety in early design stages, and through hands-on exploration help older adults develop good mental models, i.e., understand AV capabilities and limitations, towards building trust and acceptance for these emerging modes of transportation. Research and policy implications will be discussed towards enabling emerging driverless shared-use AV technologies that support safe and independent community mobility for older adults. 
    more » « less
  5. Background Smart glasses have been gaining momentum as a novel technology because of their advantages in enabling hands-free operation and see-what-I-see remote consultation. Researchers have primarily evaluated this technology in hospital settings; however, limited research has investigated its application in prehospital operations. Objective The aim of this study is to understand the potential of smart glasses to support the work practices of prehospital providers, such as emergency medical services (EMS) personnel. Methods We conducted semistructured interviews with 13 EMS providers recruited from 4 hospital-based EMS agencies in an urban area in the east coast region of the United States. The interview questions covered EMS workflow, challenges encountered, technology needs, and users’ perceptions of smart glasses in supporting daily EMS work. During the interviews, we demonstrated a system prototype to elicit more accurate and comprehensive insights regarding smart glasses. Interviews were transcribed verbatim and analyzed using the open coding technique. Results We identified four potential application areas for smart glasses in EMS: enhancing teleconsultation between distributed prehospital and hospital providers, semiautomating patient data collection and documentation in real time, supporting decision-making and situation awareness, and augmenting quality assurance and training. Compared with the built-in touch pad, voice commands and hand gestures were indicated as the most preferred and suitable interaction mechanisms. EMS providers expressed positive attitudes toward using smart glasses during prehospital encounters. However, several potential barriers and user concerns need to be considered and addressed before implementing and deploying smart glasses in EMS practice. They are related to hardware limitations, human factors, reliability, workflow, interoperability, and privacy. Conclusions Smart glasses can be a suitable technological means for supporting EMS work. We conclude this paper by discussing several design considerations for realizing the full potential of this hands-free technology. 
    more » « less