skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A spatial mutation model with increasing mutation rates
Abstract We consider a spatial model of cancer in which cells are points on thed-dimensional torus$$\mathcal{T}=[0,L]^d$$, and each cell with$$k-1$$mutations acquires akth mutation at rate$$\mu_k$$. We assume that the mutation rates$$\mu_k$$are increasing, and we find the asymptotic waiting time for the first cell to acquirekmutations as the torus volume tends to infinity. This paper generalizes results on waiting for$$k\geq 3$$mutations in Fooet al.(2020), which considered the case in which all of the mutation rates$$\mu_k$$are the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.  more » « less
Award ID(s):
1645643
PAR ID:
10548583
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Applied Probability
Volume:
60
Issue:
4
ISSN:
0021-9002
Page Range / eLocation ID:
1157 to 1180
Subject(s) / Keyword(s):
Mutation cancer spatial population model
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Designing an algorithm with a singly exponential complexity for computing semialgebraic triangulations of a given semialgebraic set has been a holy grail in algorithmic semialgebraic geometry. More precisely, given a description of a semialgebraic set$$S \subset \mathbb {R}^k$$by a first-order quantifier-free formula in the language of the reals, the goal is to output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$, is semialgebraically homeomorphic toS. In this paper, we consider a weaker version of this question. We prove that for any$$\ell \geq 0$$, there exists an algorithm which takes as input a description of a semialgebraic subset$$S \subset \mathbb {R}^k$$given by a quantifier-free first-order formula$$\phi $$in the language of the reals and produces as output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$is$$\ell $$-equivalent toS. The complexity of our algorithm is bounded by$$(sd)^{k^{O(\ell )}}$$, wheresis the number of polynomials appearing in the formula$$\phi $$, andda bound on their degrees. For fixed$$\ell $$, this bound issingly exponentialink. In particular, since$$\ell $$-equivalence implies that thehomotopy groupsup to dimension$$\ell $$of$$|\Delta |$$are isomorphic to those ofS, we obtain a reduction (having singly exponential complexity) of the problem of computing the first$$\ell $$homotopy groups ofSto the combinatorial problem of computing the first$$\ell $$homotopy groups of a finite simplicial complex of size bounded by$$(sd)^{k^{O(\ell )}}$$. 
    more » « less
  2. Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices. 
    more » « less
  3. Abstract Let$$\Sigma$$be an alphabet and$$\mu$$be a distribution on$$\Sigma ^k$$for some$$k \geqslant 2$$. Let$$\alpha \gt 0$$be the minimum probability of a tuple in the support of$$\mu$$(denoted$$\mathsf{supp}(\mu )$$). We treat the parameters$$\Sigma , k, \mu , \alpha$$as fixed and constant. We say that the distribution$$\mu$$has a linear embedding if there exist an Abelian group$$G$$(with the identity element$$0_G$$) and mappings$$\sigma _i : \Sigma \rightarrow G$$,$$1 \leqslant i \leqslant k$$, such that at least one of the mappings is non-constant and for every$$(a_1, a_2, \ldots , a_k)\in \mathsf{supp}(\mu )$$,$$\sum _{i=1}^k \sigma _i(a_i) = 0_G$$. In [Bhangale-Khot-Minzer, STOC 2022], the authors asked the following analytical question. Let$$f_i: \Sigma ^n\rightarrow [\!-1,1]$$be bounded functions, such that at least one of the functions$$f_i$$essentially has degree at least$$d$$, meaning that the Fourier mass of$$f_i$$on terms of degree less than$$d$$is at most$$\delta$$. If$$\mu$$has no linear embedding (over any Abelian group), then is it necessarily the case that\begin{equation*}\left | \mathop {\mathbb{E}}_{({\textbf {x}}_1, {\textbf {x}}_2, \ldots , {\textbf {x}}_k)\sim \mu ^{\otimes n}}[f_1({\textbf {x}}_1)f_2({\textbf {x}}_2)\cdots f_k({\textbf {x}}_k)] \right | = o_{d, \delta }(1),\end{equation*}where the right hand side$$\to 0$$as the degree$$d \to \infty$$and$$\delta \to 0$$? In this paper, we answer this analytical question fully and in the affirmative for$$k=3$$. We also show the following two applications of the result.1.The first application is related to hardness of approximation. Using the reduction from [5], we show that for every$$3$$-ary predicate$$P:\Sigma ^3 \to \{0,1\}$$such that$$P$$has no linear embedding, anSDP (semi-definite programming) integrality gap instanceof a$$P$$-Constraint Satisfaction Problem (CSP) instance with gap$$(1,s)$$can be translated into a dictatorship test with completeness$$1$$and soundness$$s+o(1)$$, under certain additional conditions on the instance.2.The second application is related to additive combinatorics. We show that if the distribution$$\mu$$on$$\Sigma ^3$$has no linear embedding, marginals of$$\mu$$are uniform on$$\Sigma$$, and$$(a,a,a)\in \texttt{supp}(\mu )$$for every$$a\in \Sigma$$, then every large enough subset of$$\Sigma ^n$$contains a triple$$({\textbf {x}}_1, {\textbf {x}}_2,{\textbf {x}}_3)$$from$$\mu ^{\otimes n}$$(and in fact a significant density of such triples). 
    more » « less
  4. Abstract LetKbe an imaginary quadratic field and$$p\geq 5$$a rational prime inert inK. For a$$\mathbb {Q}$$-curveEwith complex multiplication by$$\mathcal {O}_K$$and good reduction atp, K. Rubin introduced ap-adicL-function$$\mathscr {L}_{E}$$which interpolates special values ofL-functions ofEtwisted by anticyclotomic characters ofK. In this paper, we prove a formula which links certain values of$$\mathscr {L}_{E}$$outside its defining range of interpolation with rational points onE. Arithmetic consequences includep-converse to the Gross–Zagier and Kolyvagin theorem forE. A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic$${\mathbb {Z}}_p$$-extension$$\Psi _\infty $$of the unramified quadratic extension of$${\mathbb {Q}}_p$$. Along the way, we present a theory of local points over$$\Psi _\infty $$of the Lubin–Tate formal group of height$$2$$for the uniformizing parameter$$-p$$. 
    more » « less
  5. Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$. 
    more » « less