Circular dichroism (CD) spectroscopy, which measures the differential absorption of circularly polarized light with opposite handedness, is an important technique to detect and identify chiral molecules in chemistry, biology and life sciences. However, CD signals are normally very small due to the intrinsically weak chirality of molecules. Here we theoretically investigate the generation of chiral hotspots in silicon nanocube dimers for CD enhancement. Up to 15-fold enhancement of the global optical chirality is obtained in the dimer gap, which boosts the CD signal by one order of magnitude without reducing the dissymmetry factor. This chiral hotspot originates from the simultaneous enhancement of magnetic and electric fields and their proper spatial overlap. Our findings could lead to integrated devices for CD spectroscopy, enantioselective sensing, sorting and synthesis.
more »
« less
Giant Plasmonic Enhancement of Chiroptical Properties by Anisotropic Gold Nanocrystals Grown In Situ in a Chiral Polymer
Abstract Polymer‐based chiral materials with exceptional optical activity can dramatically impact integrated chiral photonics due to the tunability of their optical responses coupled with ease of fabrication. Realizing these applications requires increasing the absorbance dissymmetry factor. Here, in situ, the synthesis of gold nanostars is introduced in a chiral polymer medium to produce chiral polymer‐anisotropic plasmonic nanocrystal nanocomposites. The optimized nanocomposite shows a tenfold enhancement of dissymmetry factor,gabs(up to 0.64) and a corresponding 46‐fold augmented circular dichroism (CD) value upon annealing, relative to the annealed pure chiral polymer film. Moreover, the enhancement relative to the non‐annealed polymer‐gold nanostar nanocomposite is strikingly higher: a 35‐fold increase ingabsand a 4272‐fold increase in CD. Based on computational analysis, it is concluded that the local plasmon field enhancement around the crevices and tips of nanostars is mainly responsible for the observed effect which is further supported by a signal enhancement in Surface Enhanced Raman Scattering (SERS). Thus, this study underscores the significant role of close‐range plasmon interactions in altering the chiroptical response of nanocomposite materials and a practical pathway toward the realization of next‐generation integrated photonics and optoelectronic circuitry with photon spin control.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10548814
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Advanced Optical Materials
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We deconvolute the distinct and sometimes competing effects of geometric and material chirality in metastructures created from materials that are intrinsically chiral. We find that overlapping Mie-like resonances in nanodisk arrays leads to 6-fold CD enhancement compared to a uniform film. Furthermore, making the medium chiral does not necessarily increase CD; enhancement depends on the magnitude of the Pasteur parameter and its real and imaginary components. Finally, to demonstrate how geometric and material chirality can be combined, we design a geometrically chiral meta-atom out of chiral media and observe over 9-fold enhancement in both CD andg-factor compared to a metasurface comprised of achiral material.more » « less
-
Abstract Plasmon‐mediated synthesis enables isotropic metal nanocrystal growth with linearly polarized light. This limits the effect of the polarization of incident light during synthesis, and thus restricts the structural chirality of nanocrystals produced with circularly polarized light (CPL). This study here demonstrates that surface engineering of initial achiral silver nanorods (AgNRs) can enhance the structural chirality of the resulting nanostructures produced with CPL. Specifically, the surface ligand hexadecyltrimethylammonium bromide (CTAB) stabilizes the lateral (100) facet‐terminated sides of achiral AgNRs and inhibits lateral growth. This surface engineering with achiral ligands results in increased dissymmetry of the nanostructures during the early stages of photo‐growth and leads to the formation of “hook” structures, where silver preferentially deposits near the tips of the nanorods. Upon further CPL illumination, these “hook” structures exhibit a significantly larger dissymmetry in the local electric field enhancement distribution compared to the initial achiral AgNRs. This highly dissymmetric electric field enhancement profile influences subsequent growth, resulting in AgNRs with enhanced structural chirality. Notably, the optical dissymmetry of these chiral nanostructures withg‐factor≈0.05 is an order of magnitude greater than that reported in previous studies conducted under similar chemical conditions but without surface engineering.more » « less
-
Plasmonic nanoparticles with chiral resonances in the visible wavelengths complement optical dissymmetry in the ultraviolet and near-infrared wavelengths in natural products and metamaterials respectively. Here, we show that under oxidative conditions, hot holes photogenerated with circularly polarized light in gold nanoprisms can spatially direct the photodeposition of lead oxide (PbO2), resulting in chiral nanostructures tunable with the polarization and wavelength of light. We observe a g-factor of 3.6 × 10–3, which can be attributed to the enhanced optical dissymmetry with PbO2 deposition of the side of nanoprisms upon illumination with green 532 nm light. Our finite-difference time-domain calculations support the site-specific photodeposition of PbO2 onto nanoprisms. This work shows that plasmonic nanoparticles can have tunable chiral properties imbued as a function of the wavelength and polarization of light.more » « less
-
Achiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization. By introducing a PMMA molecule layer on top of the metasurface, which covers the area with large optical chirality, CD in absorption of 0.38 and a dissymmetric factor of optical chiralitygcof 0.16 are obtained. Furthermore, an analysis of the coupled harmonic oscillator model reveals stronger coupling strength between the PMMA layer and the metasurface under RCP incidence, compared to the LCP case. Moreover, it is shown that the far-field CD response of the metasurface is linearly correlated with the dissymmetric near-field optical chirality distribution. The demonstrated results present the potential for advancing applications in chiral molecule vibrational sensing, thermal emission control, and infrared chiral imaging.more » « less
An official website of the United States government

