skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral optical properties of metasurfaces comprised of chiral media: effects of geometric and material chirality
We deconvolute the distinct and sometimes competing effects of geometric and material chirality in metastructures created from materials that are intrinsically chiral. We find that overlapping Mie-like resonances in nanodisk arrays leads to 6-fold CD enhancement compared to a uniform film. Furthermore, making the medium chiral does not necessarily increase CD; enhancement depends on the magnitude of the Pasteur parameter and its real and imaginary components. Finally, to demonstrate how geometric and material chirality can be combined, we design a geometrically chiral meta-atom out of chiral media and observe over 9-fold enhancement in both CD andg-factor compared to a metasurface comprised of achiral material.  more » « less
Award ID(s):
2102835
PAR ID:
10557090
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
25
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 45075
Size(s):
Article No. 45075
Sponsoring Org:
National Science Foundation
More Like this
  1. Circular dichroism (CD) spectroscopy, which measures the differential absorption of circularly polarized light with opposite handedness, is an important technique to detect and identify chiral molecules in chemistry, biology and life sciences. However, CD signals are normally very small due to the intrinsically weak chirality of molecules. Here we theoretically investigate the generation of chiral hotspots in silicon nanocube dimers for CD enhancement. Up to 15-fold enhancement of the global optical chirality is obtained in the dimer gap, which boosts the CD signal by one order of magnitude without reducing the dissymmetry factor. This chiral hotspot originates from the simultaneous enhancement of magnetic and electric fields and their proper spatial overlap. Our findings could lead to integrated devices for CD spectroscopy, enantioselective sensing, sorting and synthesis. 
    more » « less
  2. Abstract Polymer‐based chiral materials with exceptional optical activity can dramatically impact integrated chiral photonics due to the tunability of their optical responses coupled with ease of fabrication. Realizing these applications requires increasing the absorbance dissymmetry factor. Here, in situ, the synthesis of gold nanostars is introduced in a chiral polymer medium to produce chiral polymer‐anisotropic plasmonic nanocrystal nanocomposites. The optimized nanocomposite shows a tenfold enhancement of dissymmetry factor,gabs(up to 0.64) and a corresponding 46‐fold augmented circular dichroism (CD) value upon annealing, relative to the annealed pure chiral polymer film. Moreover, the enhancement relative to the non‐annealed polymer‐gold nanostar nanocomposite is strikingly higher: a 35‐fold increase ingabsand a 4272‐fold increase in CD. Based on computational analysis, it is concluded that the local plasmon field enhancement around the crevices and tips of nanostars is mainly responsible for the observed effect which is further supported by a signal enhancement in Surface Enhanced Raman Scattering (SERS). Thus, this study underscores the significant role of close‐range plasmon interactions in altering the chiroptical response of nanocomposite materials and a practical pathway toward the realization of next‐generation integrated photonics and optoelectronic circuitry with photon spin control. 
    more » « less
  3. Abstract Detection and identification of chiral molecules are important for pharmaceutical industry, clinical analysis, and food analysis. Here, chiral molecular sensing based on spatially selective coupling between achiral metasurface and chiral molecules is demonstrated. The designed achiral metasurface exhibits strong optical chirality and electric field with dissymmetric distribution, and chiral molecules are selectively placed over the area with large optical chirality to form the coupled metasurface-molecule system with circular dichroism (CD) response for chiral molecular sensing. The CD spectra of the metasurface coupled with pure D-alanine enantiomer, L-alanine enantiomer and their mixtures are examined. The linear relationship between the peak CD value and the enantiomeric excess is demonstrated for the detection and identification of pure enantiomers and their mixtures. Furthermore, the CD response of the coupled system shows potential for the sensing of molar concentration of chiral molecules. Moreover, the effect of spatial location of molecules on the CD response is analyzed to show potential for position sensing of chiral molecules. These results of chiral molecular sensing with achiral metasurface offer new opportunities for advancing biomolecular sensing applications. 
    more » « less
  4. Achiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization. By introducing a PMMA molecule layer on top of the metasurface, which covers the area with large optical chirality, CD in absorption of 0.38 and a dissymmetric factor of optical chiralitygcof 0.16 are obtained. Furthermore, an analysis of the coupled harmonic oscillator model reveals stronger coupling strength between the PMMA layer and the metasurface under RCP incidence, compared to the LCP case. Moreover, it is shown that the far-field CD response of the metasurface is linearly correlated with the dissymmetric near-field optical chirality distribution. The demonstrated results present the potential for advancing applications in chiral molecule vibrational sensing, thermal emission control, and infrared chiral imaging. 
    more » « less
  5. Abstract Chiral perovskite nanocrystals have emerged as an interesting chiral excitonic platform that combines both structural flexibility and superior optoelectronic properties. Despite several recent demonstrations of optical activity in various chiral perovskite nanocrystals, efficient circularly polarized luminescence (CPL) with tunable energies remains a challenge. The chirality imprinting mechanism as a function of perovskite nanocrystal dimensionality remains elusive. Here, atomically thin inorganic perovskite nanoplatelets (NPLs) are synthesized with precise control of layer thickness and are functionalized by chiral surface ligands, serving as a unique platform to probe the chirality transfer mechanism at the organic/perovskite interface. It is found that chirality is successfully imprinted into mono‐, bi‐, and tri‐layer inorganic perovskite NPLs, exhibiting tunable circular dichroism (CD) and CPL responses. However, chirality transfer decreases in thicker NPLs, resulting in decreased CD and CPL dissymmetry factors for thicker NPLs. Aided by large‐scale first‐principles calculations, it is proposed that chirality transfer is mainly mediated through a surface distortion rather than a hybridization of electronic states, giving rise to symmetry breaking in the perovskite lattice and spin‐split conduction bands. The findings described here provide an in‐depth understanding of chirality transfer and design principles for distorted‐surface perovskites for chiral photonic applications. 
    more » « less