The Sia1 scheduler efficiently assigns heterogeneous deep learning (DL) cluster resources to elastic resource-adaptive jobs. Although some recent schedulers address one aspect or another (e.g., heterogeneity or resource-adaptivity), none addresses all and most scale poorly to large clusters and/or heavy workloads even without the full complexity of the combined scheduling problem. Sia introduces a new scheduling formulation that can scale to the search-space sizes and intentionally match jobs and their configurations to GPU types and counts, while adapting to changes in cluster load and job mix over time. Sia also introduces a low- profiling-overhead approach to bootstrapping (for each new job) throughput models used to evaluate possible resource assignments, and it is the first cluster scheduler to support elastic scaling of hybrid parallel jobs. Extensive evaluations show that Sia outperforms state-of- the-art schedulers. For example, even on relatively small 44- to 64-GPU clusters with a mix of three GPU types, Sia reduces average job completion time ( JCT) by 30–93%, 99th percentile JCT and makespan by 28–95%, and GPU hours used by 12– 55% for workloads derived from 3 real-world environments. Additional experiments demonstrate that Sia scales to at least 2000-GPU clusters, provides improved fairness, and is not over-sensitive to scheduler parameter settings.
more »
« less
When will my ML Job finish? Toward providing Completion Time Estimates through Predictability-Centric Scheduling
In this paper, we make a case for providing job completion time estimates to GPU cluster users, similar to providing the delivery date of a package or arrival time of a booked ride. Our analysis reveals that providing predictability can come at the expense of performance and fairness. Existing GPU schedulers optimize for extreme points in the trade-off space, making them either extremely unpredictable or impractical. To address this challenge, we present PCS, a new scheduling framework that aims to provide predictability while balancing other traditional objectives. The key idea behind PCS is to use Weighted-Fair-Queueing (WFQ) and find a suitable configuration of different WFQ parameters (e.g., queue weights) that meets specific goals for predictability. It uses a simulation-aided search strategy to efficiently discover WFQ configurations that lie around the Pareto front of the trade-off space between these objectives. We implement and evaluate PCS in the context of scheduling ML training workloads on GPUs. Our evaluation, on a small-scale GPU testbed and larger-scale simulations, shows that PCS can provide accurate completion time estimates while marginally compromising on performance and fairness.
more »
« less
- Award ID(s):
- 2106797
- PAR ID:
- 10548868
- Publisher / Repository:
- Usenix OSDI
- Date Published:
- ISBN:
- 978-1-939133-40-3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apportion GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads' unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks' relative placement. We propose Themis, a new scheduling framework for ML training workloads. It's GPU allocation policy enforces that ML workloads complete in a finish-time fair manner, a new notion we introduce. To capture placement sensitivity and ensure efficiency, Themis uses a two-level scheduling architecture where ML workloads bid on available resources that are offered in an auction run by a central arbiter. Our auction design allocates GPUs to winning bids by trading off fairness for efficiency in the short term, but ensuring finish-time fairness in the long term. Our evaluation on a production trace shows that Themis can improve fairness by more than 2.25X and is ~5% to 250% more cluster efficient in comparison to state-of-the-art schedulers.more » « less
-
null (Ed.)Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies.more » « less
-
Among the variety of applications (apps) being deployed on serverless platforms, apps such as Machine Learning (ML) inference serving can achieve better performance from leveraging accelerators like GPUs. Yet, major serverless providers, despite having GPU-equipped servers, do not offer GPU support for their serverless functions. Given that serverless functions are deployed on various generations of CPUs already, extending this to various (typically more expensive) GPU generations can offer providers a greater range of hardware to serve incoming requests according to the functions and request traffic. Here, providers are faced with the challenge of selecting hardware to reach a well-proportioned trade-off point between cost and performance. While recent works have attempted to address this, they often fail to do so as they overlook optimization opportunities arising from intelligently leveraging existing GPU sharing mechanisms. To address this point, we devise a heterogeneous serverless framework, PALDIA, which uses a prudent Hardware selection policy to acquire capable, costeffective hardware and perform intelligent request scheduling on it to yield high performance and cost savings. Specifically, our scheduling algorithm employs hybrid spatio-temporal GPU sharing that intelligently trades off job queueing delays and interference to allow the chosen cost-effective hardware to also be highly performant. We extensively evaluate PALDIA using 16 ML inference workloads with real-world traces on a 6 node heterogeneous cluster. Our results show that PALDIA significantly outperforms state-of-the-art works in terms of Service Level Objective (SLO) compliance (up to 13.3% more) and tail latency (up to ∼50% less), with cost savings up to 86%.more » « less
-
Pellizzoni, Rodolfo (Ed.)Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.more » « less
An official website of the United States government

