skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of glaciations in the evolutionary history of a widely distributed Neotropical open habitat bird
Abstract AimThe Neotropics constitute the most biodiverse region of the world, yet its patterns of diversification and speciation differ among Neotropical areas and are not equally well understood. Particularly, avian evolutionary processes are understudied in the open habitats of temperate South America, where the role of glacial cycles is not clear. We analysed the evolutionary history of a Neotropical widespread bird species as a case study to evaluate its continental‐scale patterns and processes of diversification, with a focus on Patagonia. LocationOpen habitats of the Neotropics. TaxonVanellus chilensis(Aves, Charadriiformes). MethodsWe obtained reduced representation genomic and mitochondrial data from the four subspecies ofV. chilensisto perform a phylogenetic/phylogeographical analysis and study the evolutionary history of the species. We complemented these analyses with the study of vocalizations, a reproductive signal in birds. ResultsThe initial diversification event withinV. chilensis, approximately 600,000 years ago, split a Patagonian lineage from one containing individuals from the rest of the Neotropics. We found considerable gene flow between these two lineages and a contact zone in northern Patagonia, and showed that genomic admixture extends to northwestern Argentina. Shallower divergence was detected between the two non‐Patagonian subspecies, which are separated by the Amazon River. Vocalizations were significantly different between the two main lineages and were intermediate in their temporal and frequency characteristics in the contact zone. Main ConclusionsPatagonian populations ofV. chilensisare clearly differentiated from those of the rest of the Neotropics, possibly as a consequence of Pleistocene glaciations. A secondary contact zone in northern Patagonia with extensive gene flow among lineages appears to be the consequence of post‐glacial, northward expansion of the Patagonian populations. Future analyses focused on the dynamics of the contact zone will allow us to establish whether the species continues to diverge or is homogenizing.  more » « less
Award ID(s):
2232929
PAR ID:
10548873
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Biogeography
Volume:
51
Issue:
2
ISSN:
0305-0270
Page Range / eLocation ID:
199 to 214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification. 
    more » « less
  2. Mérot, Claire; Morlon, Hélène (Ed.)
    Abstract The Rufous-collared Sparrow (Zonotrichia capensis) shows phenotypic variation throughout its distribution. In particular, the Patagonian subspecies Z. c. australis is strikingly distinct from all other subspecies, lacking the black crown stripes that characterize the species, with a uniformly grey head and overall paler plumage. We sequenced whole genomes of 18 individuals (9 Z. c. australis and 9 from other subspecies from northern Argentina) to explore the genomic basis of these color differences and to investigate how they may have evolved. We detected a single ~465-kb divergence peak on chromosome 5 that contrasted with a background of low genomic differentiation and contains the suppression of tumorigenicity 5 (ST5) gene. ST5 regulates RAB9A, which is required for melanosome biogenesis and melanocyte pigmentation in mammals, making it a strong candidate gene for the melanic plumage polymorphism within Z. capensis. This genomic island of differentiation may have emerged because of selection acting on allopatric populations or against gene flow on populations in physical and genetic contact. Mitochondrial DNA indicated that Z. c. australis diverged from other subspecies ~400,000 years ago, suggesting a putative role of Pleistocene glaciations. Phenotypic differences are consistent with Gloger’s rule, which predicts lighter-colored individuals in colder and drier climates like that of Patagonia. 
    more » « less
  3. ABSTRACT AimThe aim of the current study is to conduct a comprehensive phylogenetic analysis of the genusArbaciato elucidate the evolution and phylogenetic relationships among all extant species and reevaluate the presence of geographic structure within species that have wide, fragmented distributions. LocationSpecimens ofArbaciawere collected from 34 localities spanning the Atlantic and Pacific Oceans, and the Mediterranean Sea. MethodsWe obtained sequences from three mitochondrial markers (COI, 16S and the control region and adjacent tRNAs) and two nuclear markers (28S and 18S; the latter ultimately excluded from the final analyses). Phylogenetic trees were constructed using maximum likelihood and Bayesian inference approaches. A time‐calibrated phylogenetic tree was inferred using a relaxed Bayesian molecular clock and three fossil calibration points. ResultsOur analysis supports the monophyly of the genusArbacia, including the speciesArbacia nigra(previously assigned to the monotypic genusTetrapygus). The new phylogenetic topology suggests an alternative biogeographic scenario of initial divergence between Atlantic and Pacific subclades occurring approximately 9 million years ago. The dispersal and subsequent diversification of the Pacific subclade to the southeast Pacific coincides with the onset of glacial and interglacial cycles in Patagonia. In the Atlantic subclade, the split betweenA. punctulataandA. lixulaoccurred 3.01–6.30 (median 3.74 million years ago), possibly associated with the strengthening of the Gulf Stream current connecting the western and eastern Atlantic. Our study also reveals significant genetic and phylogeographic structures within both Atlantic species, indicating ongoing differentiation processes between populations. Main ConclusionOur study provides valuable insights into the evolutionary history and biogeography of the genusArbaciaand highlights the complex interplay between historical climate changes and oceanic currents in shaping the distribution and diversification of echinoids in the Atlantic and Pacific Oceans. 
    more » « less
  4. ABSTRACT AimWe tested whether co‐distributed phrynosomatid lizards in the Baja California Peninsula (BCP) share synchronous phylogeographic discontinuities, as predicted by the “peninsular archipelago” hypothesis, and examined the diversification ofCallisaurus draconoidesthroughout its range. LocationThe BCP and the Great Basin, Mojave and Sonoran Deserts of southwestern North America. TaxaFive co‐distributed species complexes representing four genera within Phrynosomatidae:Callisaurus,Petrosaurus,UrosaurusandSceloporus. MethodsDouble‐digest restriction‐associated‐DNA (ddRAD) sequencing was used to collect genome‐wide sequence data for 309 lizards. We used phylogenetic analyses of concatenated loci and population admixture analysis of unlinked SNPs to identify lineages. To infer a species tree, we collected target sequence capture (TSC) data. Migration between adjacent peninsular lineages was estimated using the multispecies coalescent with migration (MSC‐M) in BPP. A full‐likelihood Bayesian comparative phylogeographic approach (ecoevolity) was used to test the simultaneous divergence hypothesis for the Isthmus of La Paz and Vizcaíno Desert. ResultsWe identified 24 potential lineages within the five co‐distributed complexes. Contact zones between lineages were observed at the Isthmus of La Paz in four of the five complexes, and in all five within the Vizcaíno Desert. The time‐calibrated species tree indicates that within each complex, divergences at the Isthmus of La Paz predate those across the Vizcaíno Desert. We found strong support for at least three independent divergence events at the Isthmus of La Paz and the Vizcaíno Desert, thereby rejecting the simultaneous divergence hypothesis. Inferred migration rates between adjacent peninsular populations were generally low (M << 1) to absent. Zebra‐tailed lizards (Callisaurus), in which the earliest diverging lineages are endemic to the southern BCP, exhibit a clear pattern of Pleistocene range expansion from the BCP into the deserts of the western United States and mainland Mexico. The most deeply nested populations inCallisaurusoccur at the northern, eastern and southeastern range limits in temperate, subtropical and tropical biomes, respectively. Main ConclusionsThese results support the BCP's tectonic isolation as a driver of peninsular endemism and a contributing factor to lineage diversification more broadly in the region. Taxonomic adjustments, including resurrectingUrosaurus microscutatus, are proposed to better reflect evolutionary history in taxonomy. 
    more » « less
  5. Abstract AimThe standard latitudinal diversity gradient (LDG), in which species richness decreases from equator to pole, is a pervasive pattern observed in most organisms. Some lineages, however, exhibit inverse LDGs. Seemingly problematic, documenting and studying contrarian groups can advance understanding of LDGs generally. Here, we identify one such contrarian clade and use a historical approach to evaluate alternative hypotheses that might explain the group's atypical diversity pattern. We focus on the biogeographical conservatism hypothesis (BCH) and the diversification rate hypothesis (DRH). LocationGlobal. TaxonAnts (Hymenoptera: Formicidae: Stenammini). MethodsWe examined the shape of the LDG in Stenammini by plotting latitudinal midpoints for all extant, described species. We inferred a robust genome‐scale phylogeny using UCE data. We estimated divergence dates using beast2 and tested several biogeographical models inBioGeoBEARS. To examine diversification rates and test for a correlation between rate and latitude, we used the programs BAMM and STRAPP, respectively. ResultsStenammini has a skewed inverse LDG with a richness peak in the northern temperate zone. Phylogenomic analyses revealed five major clades and several instances of non‐monophyly among genera (Goniomma,Aphaenogaster). Stenammini and all its major lineages arose in the northern temperate zone. The tribe originated ~51 Ma during a climatic optimum and then diversified and dispersed southward as global climate cooled. Stenammini invaded the tropics at least seven times, but these events occurred more recently and were not linked with increased diversification. There is evidence for a diversification rate increase in HolarcticAphaenogaster + Messor, but we found no significant correlation between latitude and diversification rate generally. Main ConclusionsOur results largely support the BCH as an explanation for the inverse latitudinal gradient in Stenammini. The clade originated in the Holarctic and likely became more diverse there due to center‐of‐origin, time‐for‐speciation and niche conservatism effects, rather than latitudinal differences in diversification rate. 
    more » « less