Transition metal alloys are essential for magnetic recording, memory, and new materials-by-design applications. Saturation magnetization in these alloys have previously been measured by conventional techniques, for a limited number of samples with discrete compositions, a laborious and time-consuming effort. Here, we propose a method to construct complete saturation magnetization diagrams for Co–Fe–Ni alloys using scanning Hall probe microscopy (SHPM). A composition gradient was created by the diffusion multiple technique, generating a full combinatorial materials library with an identical thermal history. The composition and crystallographic phases of the alloys were identified by integrated energy dispersive X-ray spectroscopy and electron backscatter diffraction. “Pixel-by-pixel” perpendicular components of the magnetic field were converted into maps of saturation magnetization using the inversion matrix technique. The saturation magnetization dependence for the binary alloys was consistent with the Slater-Pauling behavior. By using a significantly denser data point distribution than previously available, the maximum of the Slater-Pauling curve for the Co–Fe alloys was identified at ~ 32 at% of Co. By mapping the entire ternary diagram of Co–Fe–Ni alloys recorded in a single experiment, we have demonstrated that SHPM—in concert with the combinatorial approach—is a powerful high-throughput characterization tool, providing an effective metrology platform to advance the search for new magnetic materials.
This content will become publicly available on March 20, 2025
This work elucidates a route to mesoporous magnetic materials with co-continuous morphologies from block copolymer self-assembly. The co-continuous structure impacts the magnetic behavior compared to non-structured chemically-identical materials.
more » « less- Award ID(s):
- 1719875
- PAR ID:
- 10549113
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 12
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 2767 to 2776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co–N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co–N compounds with favorable magnetic properties including hexagonal Co 3 N nanoparticles with a high saturation magnetic polarization ( J s = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy ( K 1 = 1.01 MJ m −3 or 10.1 Mergs per cm 3 ). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.more » « less
-
Abstract Internal magnetic moments induced by magnetic dopants in MoS2monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co‐doped MoS2with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization‐resolved photoluminescence (PL) spectroscopy. Atomic‐resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto‐optical and spintronic devices.
-
Abstract Magnetic skyrmions are topologically protected spin textures that are being investigated for their potential use in next generation magnetic storage devices. Here, magnetic skyrmions and other magnetic phases in Fe1−
x Cox Ge (x < 0.1) microplates (MPLs) newly synthesized via chemical vapor deposition are studied using both magnetic imaging and transport measurements. Lorentz transmission electron microscopy reveals a stabilized magnetic skyrmion phase near room temperature (≈280 K) and a quenched metastable skyrmion lattice via field cooling. Magnetoresistance (MR) measurements in three different configurations reveal a unique anomalous MR signal at temperatures below 200 K and two distinct field dependent magnetic transitions. The topological Hall effect (THE), known as the electronic signature of magnetic skyrmion phase, is detected for the first time in a Fe1−x Cox Ge nanostructure, with a large and positive peak THE resistivity of ≈32 nΩ cm at 260 K. This large magnitude is attributed to both nanostructuring and decreased carrier concentrations due to Co alloying of the Fe1−x Cox Ge MPL. A consistent magnetic phase diagram summarized from both the magnetic imaging and transport measurements shows that the magnetic skyrmions are stabilized in Fe1−x Cox Ge MPLs compared to bulk materials. This study lays the foundation for future skyrmion‐based nanodevices in information storage technologies. -
Abstract Magnetic toroidicity is an uncommon type of magnetic structure in solid-state materials. Here, we experimentally demonstrate that collinear spins in a material with
R -3 lattice symmetry can host a significant magnetic toroidicity, even parallel to the ordered spins. Taking advantage of a single crystal sample of CoTe6O13with anR -3 space group and a Co2+triangular sublattice, temperature-dependent magnetic, thermodynamic, and neutron diffraction results reveal A-type antiferromagnetic order below 19.5 K, with magnetic point group -3′ andk = (0,0,0). Our symmetry analysis suggests that the missing mirror symmetry in the lattice could lead to the local spin canting for a toroidal moment along thec axis. Experimentally, we observe a large off-diagonal magnetoelectric coefficient of 41.2 ps/m that evidences the magnetic toroidicity. In addition, the paramagnetic state exhibits a large effective moment per Co2+, indicating that the magnetic moment in CoTe6O13has a significant orbital contribution. CoTe6O13embodies an excellent opportunity for the study of next-generation functional magnetoelectric materials.