Polarization-induced carriers play an important role in achieving high electrical conductivity in ultrawide bandgap semiconductor AlGaN, which is essential for various applications ranging from radio frequency and power electronics to deep UV photonics. Despite significant scientific and technological interest, studies on polarization-induced carriers in N-polar AlGaN are rare. We report the observation and properties of polarization-induced two-dimensional electron gases (2DEGs) in N-polar AlGaN/AlN heterostructures on single-crystal AlN substrates by systematically varying the Al content in the 8 nm top layers from x = 0 to x = 0.6, spanning energy bandgaps from 3.56 to 4.77 eV. The 2DEG density drops monotonically with increasing Al content, from 3.8 × 1013/cm2 in the GaN channel, down to no measurable conductivity for x = 0.6. Alloy scattering limits the 2DEG mobility to below 50 cm2/V s for x = 0.49. These results provide valuable insights for designing N-polar AlGaN channel high electron mobility transistors on AlN for extreme electronics at high voltages and high temperatures, and for UV photonic devices.
more »
« less
Al-rich AlGaN Alloys: Unique Materials for Deep UV LEDs
Energy bandgap of AlxGa1−xN alloys can be tuned systematically from ∼ 3.4 to 6.1 eV by changing the alloy composition (x) from 0 to 1 and the direct bandgap nature is maintained in the entire range of alloy compositions which make the AlGaN alloys suitable materials for the development of light emitting diodes (LEDs) covering the ultraviolet (UV) spectral region from 210 to 400 nm. For LEDs in the deep UV regions (λ < 300 nm), Al-rich AlGaN alloys of Al content higher than 50% are required. Deep UV LEDs have applications in a wide range of fields including display, disinfection, medical, sensing, and communication. With recent progress in the material growth and electrical conductivity, Al-rich AlGaN alloys have emerged as unique wideband gap materials for the development of deep UV LEDs. In this review article, how the progress of Al-rich AlGaN alloys has made in terms of the material growth and electrical conductivity leading its emergence as deep UV materials have been reviewed. Challenges and prospects of the deep UV LEDs to improve the performance of the devices will also be discussed.
more »
« less
- Award ID(s):
- 2117286
- PAR ID:
- 10549320
- Editor(s):
- Sahu, Indra D
- Publisher / Repository:
- Nepal Physical Society
- Date Published:
- Journal Name:
- Journal of Nepal Physical Society
- Volume:
- 9
- Issue:
- 3
- ISSN:
- 2738-9537
- Page Range / eLocation ID:
- 26 to 36
- Subject(s) / Keyword(s):
- Al-rich AlGaN alloys, deep UV, Light emitting diodes, conductivities
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Strassburg, Martin; Kim, Jong Kyu; Krames, Michael R. (Ed.)AlGaN-based ultra-violet light emitting diodes (UV LEDs) are promising for a range of applications, including water purification, air disinfection and medical sensing. However, widespread adoption of UV LEDs is limited by the poor device efficiency. This has been attributed to the strong internal light absorption and poor electrical injection efficiency for the conventional UV LED structures, which typically use an absorbing p-GaN layer for p-type contact. Recent development of ultra-wide banggap AlGaN tunnel junctions enabled a novel UV LED design with the absence of the absorbing p-GaN contact layer. In this presentation, we will discuss recent progress of the AlGaN tunnel junctions and the development of tunnel junction-based UV LEDs, and discuss the challenges and future perspectives for the realization of high power, high efficiency UV LEDs.more » « less
-
The development of electrically pumped semiconductor diode lasers emitting at the ultraviolet (UV)-B and -C spectral bands has been an active area of research over the past several years, motivated by a wide range of emerging applications. III-Nitride materials and their alloys, in particular AlGaN, are the material of choice for the development of this ultrashort-wavelength laser technology. Despite significant progress in AlGaN-based light-emitting diodes (LEDs), the technological advancement and innovation in diode lasers at these spectral bands is lagging due to several technical challenges. Here, the authors review the progress of AlGaN electrically-pumped lasers with respect to very recent achievements made by the scientific community. The devices based on both thin films and nanowires demonstrated to date will be discussed in this review. The state-of-the-art growth technologies, such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); and various foreign substrates/templates used for the laser demonstrations will be highlighted. We will also outline technical challenges associated with the laser development, which must be overcome in order to achieve a critical technological breakthrough and fully realize the potential of these lasers.more » « less
-
Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers.more » « less
-
Polarization properties from AlGaN quantum well (QW) strongly determine the efficiency of deep ultraviolet (UV) light-emitting diodes (LEDs), hence knowing the critical Al-content at which the light polarization switches is essential for high-efficiency deep UV LED designs. This work theoretically investigates the influence of QW design on the light polarization switching in AlGaN-based UV LEDs. The physics analysis by using the self-consistent 6-band k·p model shows that the Al-content for valence subbands crossover presents an increasing trend as AlGaN QW thickness increases with consideration of polarization electric field, carrier screening effect and strain state. On the other hand, the critical Al-content where the transverse-electric-polarized spontaneous emission recombination rate (Rsp) is equal to the transverse-magnetic-polarized Rsp has the maximum value at the QW thickness of ∼1.5 nm. The difference between the two types of critical Al-contents can be explained by the quantum confined stark effect and the band mixing effect. The light polarization properties from reported AlGaN-based UV emitters show a similar trend to our theoretical results on critical Al-contents, indicating the importance on the understanding of QW design for high-efficiency deep-UV emitters.more » « less
An official website of the United States government

