skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2025

Title: Hidden-Role Games: Equilibrium Concepts and Computation
In this paper, we study the class of games known as hidden-role games in which players are assigned privately to teams and are faced with the challenge of recognizing and cooperating with teammates. This model includes both popular recreational games such as the Mafia/Werewolf family and The Resistance (Avalon) and many real-world settings, such as distributed systems where nodes need to work together to accomplish a goal in the face of possible corruptions. There has been little to no formal mathematical grounding of such settings in the literature, and it was previously not even clear what the right solution concepts (notions of equilibria) should be. A suitable notion of equilibrium should take into account the communication channels available to the players (e.g., can they communicate? Can they communicate in private?). Defining such suitable notions turns out to be a nontrivial task with several surprising conse- quences. In this paper, we provide the first rigorous definition of equilibrium for hidden-role games, which overcomes serious limitations of other solution concepts not designed for hidden-role games. We then show that in certain cases, including the above recreational games, optimal equilibria can be computed efficiently. In most other cases, we show that computing an optimal equilibrium is at least NP-hard or coNP-hard. Lastly, we experimentally validate our approach by computing exact equilibria for complete 5- and 6-player Avalon instances whose size in terms of number of information sets is larger than 1056.  more » « less
Award ID(s):
1901403
PAR ID:
10549958
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
EC24
Date Published:
Format(s):
Medium: X
Location:
New Haven, CT
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a new approach for computing optimal equilibria and mechanisms via learning in games. It applies to extensive-form settings with any number of players, including mechanism design, information design, and solution concepts such as correlated, communication, and certification equilibria. We observe that optimal equilibria are minimax equilibrium strategies of a player in an extensiveform zero-sum game. This reformulation allows us to apply techniques for learning in zero-sum games, yielding the first learning dynamics that converge to optimal equilibria, not only in empirical averages, but also in iterates. We demonstrate the practical scalability and flexibility of our approach by attaining state-of-the-art performance in benchmark tabular games, and by computing an optimal mechanism for a sequential auction design problem using deep reinforcement learning. 
    more » « less
  2. Public goods games study the incentives of individuals to contribute to a public good and their behaviors in equilibria. In this paper, we examine a specific type of public goods game where players are networked and each has binary actions, and focus on the algorithmic aspects of such games. First, we show that checking the existence of a pure-strategy Nash equilibrium is NP-Complete. We then identify tractable instances based on restrictions of either utility functions or of the underlying graphical structure. In certain cases, we also show that we can efficiently compute a socially optimal Nash equilibrium. Finally, we propose a heuristic approach for computing approximate equilibria in general binary networked public goods games, and experimentally demonstrate its effectiveness. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called σ-smooth Nash equilibrium, for a {smoothness parameter} σ. In a σ-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a σ-smooth strategy, which is a distribution that does not put too much mass (as parametrized by σ) on any fixed action. We distinguish two variants of σ-smooth Nash equilibria: strong σ-smooth Nash equilibria, in which players are required to play σ-smooth strategies under equilibrium play, and weak σ-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong σ-smooth Nash equilibria have superior computational properties to Nash equilibria: when σ as well as an approximation parameter ϵ and the number of players are all constants, there is a {constant-time} randomized algorithm to find a weak ϵ-approximate σ-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong ϵ-approximate σ-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing ϵ-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to complexity-theoretic assumptions. We complement our upper bounds by showing that when either σ or ϵ is an inverse polynomial, finding a weak ϵ-approximate σ-smooth Nash equilibria becomes computationally intractable. Our results are the first to propose a variant of Nash equilibrium which is computationally tractable, allows players to act independently, and which, as we discuss, is justified by an extensive line of work on individual choice behavior in the economics literature. 
    more » « less
  4. In this work we consider online decision-making in settings where players want to guard against possible adversarial attacks or other catastrophic failures. To address this, we propose a solution concept in which players have an additional constraint that at each time step they must play a diversified mixed strategy: one that does not put too much weight on any one action. This constraint is motivated by applications such as finance, routing, and resource allocation, where one would like to limit one’s exposure to adversarial or catastrophic events while still performing well in typical cases. We explore properties of diversified strategies in both zero-sum and general-sum games, and provide algorithms for minimizing regret within the family of diversified strategies as well as methods for using taxes or fees to guide standard regret-minimizing players towards diversified strategies. We also analyze equilibria produced by diversified strategies in general-sum games. We show that surprisingly, requiring diversification can actually lead to higher-welfare equilibria, and give strong guarantees on both price of anarchy and the social welfare produced by regret-minimizing diversified agents. We additionally give algorithms for finding optimal diversified strategies in distributed settings where one must limit communication overhead. 
    more » « less
  5. We investigate optimal decision making under imperfect recall, that is, when an agent forgets information it once held before. An example is the absentminded driver game, as well as team games in which the members have limited communication capabilities. In the framework of extensiveform games with imperfect recall, we analyze the computational complexities of finding equilibria in multiplayer settings across three different solution concepts: Nash, multiselves based on evidential decision theory (EDT), and multiselves based on causal decision theory (CDT). We are interested in both exact and approximate solution computation. As special cases, we consider (1) single-player games, (2) two-player zero-sum games and relationships to maximin values, and (3) games without exogenous stochasticity (chance nodes). We relate these problems to the complexity classes P, PPAD, PLS, ΣP2 , ∃R, and ∃∀R. 
    more » « less