skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Saddle point least squares discretization for convection-diffusion
We consider a model convection-diffusion problem and present our recent analysis and numerical results regarding mixed finite element formulation and discretization in the singular perturbed case when the convection term dominates the problem. Using the concepts of optimal norm and saddle point reformulation, we found new error estimates for the case of uniform meshes. We compare the standard linear Galerkin discretization to a saddle point least square discretization that uses quadratic test functions, and explain the non-physical oscillations of the discrete solutions. We also relate a known upwinding Petrov–Galerkin method and the stream-line diffusion discretization method, by emphasizing the resulting linear systems and by comparing appropriate error norms. The results can be extended to the multidimensional case in order to find efficient approximations for more general singular perturbed problems including convection dominated models.  more » « less
Award ID(s):
2011615
PAR ID:
10550299
Author(s) / Creator(s):
; ;
Publisher / Repository:
Applicable Analysis
Date Published:
Journal Name:
Applicable Analysis
Volume:
103
Issue:
12
ISSN:
0003-6811
Page Range / eLocation ID:
2241 to 2268
Subject(s) / Keyword(s):
Least squares saddle point systems up-winding Petrov Galerkin optimal stability norm convection dominated problem
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Beznea, Lucian; Putinar, Mihai (Ed.)
    For a model convection-diffusion problem, we obtain new error estimates for a general upwinding finite element discretization based on bubble modification of the test space. The key analysis tool is finding representations of the optimal norms on the trial spaces at the continuous and discrete levels. We analyze and compare three methods: the standard linear discretization, the saddle point least square and the upwinding Petrov-Galerkin methods. We conclude that the bubble upwinding Petrov-Galerkin method is the most performant discretization for the one dimensional model. Our results for the model convection-diffusion problem can be extended for creating new and efficient discretizations for the multidimensional cases. 
    more » « less
  2. Elsevier (Ed.)
    We consider the reaction diffusion problem and present efficient ways to discretize and precondition in the singular perturbed case when the reaction term dominates the equation. Using the concepts of optimal test norm and saddle point reformulation, we provide efficient discretization processes for uniform and non-uniform meshes. We present a preconditioning strategy that works for a large range of the perturbation parameter. Numerical examples to illustrate the efficiency of the method are included for a problem on the unit square. 
    more » « less
  3. We consider a model convection-diffusion problem and present useful connections between the finite differences and finite element discretization methods. We introduce a general upwinding Petrov-Galerkin discretization based on bubble modification of the test space and connect the method with the general upwinding approach used in finite difference discretization. We write the finite difference and the finite element systems such that the two corresponding linear systems have the same stiffness matrices, and compare the right hand side load vectors for the two methods. This new approach allows for improving well known upwinding finite difference methods and for obtaining new error estimates. We prove that the exponential bubble Petrov-Galerkin discretization can recover the interpolant of the exact solution. As a consequence, we estimate the closeness of the related finite difference solutions to the interpolant. The ideas we present in this work, can lead to building efficient new discretization methods for multidimensional convection dominated problems. 
    more » « less
  4. Abstract We present the first a priori error analysis of a new method proposed in Cockburn & Wang (2017, Adjoint-based, superconvergent Galerkin approximations of linear functionals. J. Comput. Sci., 73, 644–666), for computing adjoint-based, super-convergent Galerkin approximations of linear functionals. If $J(u)$ is a smooth linear functional, where $$u$$ is the solution of a steady-state diffusion problem, the standard approximation $$J(u_h)$$ converges with order $$h^{2k+1}$$, where $$u_h$$ is the Hybridizable Discontinuous Galerkin approximation to $$u$$ with polynomials of degree $k>0$. In contrast, numerical experiments show that the new method provides an approximation that converges with order $$h^{4k}$$, and can be computed by only using twice the computational effort needed to compute $$J(u_h)$$. Here, we put these experimental results in firm mathematical ground. We also display numerical experiments devised to explore the convergence properties of the method in cases not covered by the theory, in particular, when the solution $$u$$ or the functional $$J(\cdot )$$ are not very smooth. We end by indicating how to extend these results to the case of general Galerkin methods. 
    more » « less
  5. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less